Abstract:Semi-Supervised Semantic Segmentation (SSSS) aims to improve segmentation accuracy by leveraging a small set of labeled images alongside a larger pool of unlabeled data. Recent advances primarily focus on pseudo-labeling, consistency regularization, and co-training strategies. However, existing methods struggle to balance global semantic representation with fine-grained local feature extraction. To address this challenge, we propose a novel tri-branch semi-supervised segmentation framework incorporating a dual-teacher strategy, named IGL-DT. Our approach employs SwinUnet for high-level semantic guidance through Global Context Learning and ResUnet for detailed feature refinement via Local Regional Learning. Additionally, a Discrepancy Learning mechanism mitigates over-reliance on a single teacher, promoting adaptive feature learning. Extensive experiments on benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, achieving superior segmentation performance across various data regimes.
Abstract:Transvaginal ultrasound is a critical imaging modality for evaluating cervical anatomy and detecting physiological changes. However, accurate segmentation of cervical structures remains challenging due to low contrast, shadow artifacts, and fuzzy boundaries. While convolutional neural networks (CNNs) have shown promising results in medical image segmentation, their performance is often limited by the need for large-scale annotated datasets - an impractical requirement in clinical ultrasound imaging. Semi-supervised learning (SSL) offers a compelling solution by leveraging unlabeled data, but existing teacher-student frameworks often suffer from confirmation bias and high computational costs. We propose HDC, a novel semi-supervised segmentation framework that integrates Hierarchical Distillation and Consistency learning within a multi-level noise mean-teacher framework. Unlike conventional approaches that rely solely on pseudo-labeling, we introduce a hierarchical distillation mechanism that guides feature-level learning via two novel objectives: (1) Correlation Guidance Loss to align feature representations between the teacher and main student branch, and (2) Mutual Information Loss to stabilize representations between the main and noisy student branches. Our framework reduces model complexity while improving generalization. Extensive experiments on two fetal ultrasound datasets, FUGC and PSFH, demonstrate that our method achieves competitive performance with significantly lower computational overhead than existing multi-teacher models.
Abstract:Nowadays, smartphones are ubiquitous, and almost everyone owns one. At the same time, the rapid development of AI has spurred extensive research on applying deep learning techniques to image classification. However, due to the limited resources available on mobile devices, significant challenges remain in balancing accuracy with computational efficiency. In this paper, we propose a novel training framework called Cycle Training, which adopts a three-stage training process that alternates between exploration and stabilization phases to optimize model performance. Additionally, we incorporate Semi-Supervised Domain Adaptation (SSDA) to leverage the power of large models and unlabeled data, thereby effectively expanding the training dataset. Comprehensive experiments on the CamSSD dataset for mobile scene detection demonstrate that our framework not only significantly improves classification accuracy but also ensures real-time inference efficiency. Specifically, our method achieves a 94.00% in Top-1 accuracy and a 99.17% in Top-3 accuracy and runs inference in just 1.61ms using CPU, demonstrating its suitability for real-world mobile deployment.
Abstract:The exponential growth of digital video content has posed critical challenges in moment-level video retrieval, where existing methodologies struggle to efficiently localize specific segments within an expansive video corpus. Current retrieval systems are constrained by computational inefficiencies, temporal context limitations, and the intrinsic complexity of navigating video content. In this paper, we address these limitations through a novel Interactive Video Corpus Moment Retrieval framework that integrates a SuperGlobal Reranking mechanism and Adaptive Bidirectional Temporal Search (ABTS), strategically optimizing query similarity, temporal stability, and computational resources. By preprocessing a large corpus of videos using a keyframe extraction model and deduplication technique through image hashing, our approach provides a scalable solution that significantly reduces storage requirements while maintaining high localization precision across diverse video repositories.
Abstract:Long-form video understanding presents significant challenges for interactive retrieval systems, as conventional methods struggle to process extensive video content efficiently. Existing approaches often rely on single models, inefficient storage, unstable temporal search, and context-agnostic reranking, limiting their effectiveness. This paper presents a novel framework to enhance interactive video retrieval through four key innovations: (1) an ensemble search strategy that integrates coarse-grained (CLIP) and fine-grained (BEIT3) models to improve retrieval accuracy, (2) a storage optimization technique that reduces redundancy by selecting representative keyframes via TransNetV2 and deduplication, (3) a temporal search mechanism that localizes video segments using dual queries for start and end points, and (4) a temporal reranking approach that leverages neighboring frame context to stabilize rankings. Evaluated on known-item search and question-answering tasks, our framework demonstrates substantial improvements in retrieval precision, efficiency, and user interpretability, offering a robust solution for real-world interactive video retrieval applications.
Abstract:The cognitive faculty of visual reasoning necessitates the integration of multimodal perceptual processing and commonsense and external knowledge of the world. In recent years, a plethora of large vision-language models (LVLMs) have been proposed, demonstrating outstanding power and exceptional proficiency in commonsense reasoning across diverse domains and tasks. Nevertheless, training such LVLMs requires a lot of costly resources. Recent approaches, instead of training LVLMs from scratch on various large datasets, focus on exploring ways to take advantage of the capabilities of many different LVLMs, such as ensemble methods. In this work, we propose self-ensemble, a novel method that improves the generalization and visual reasoning of the model without updating any parameters, a training-free method. Our key insight is that we realized that LVLM itself can ensemble without the need for any other LVLMs, which helps to unlock their internal capabilities. Extensive experiments on various benchmarks demonstrate the effectiveness of our method in achieving state-of-the-art (SOTA) performance on SketchyVQA, Outside Knowledge VQA, and out-of-distribution VQA tasks.
Abstract:This paper proposed several transformer-based approaches for Reliable Intelligence Identification on Vietnamese social network sites at VLSP 2020 evaluation campaign. We exploit both of monolingual and multilingual pre-trained models. Besides, we utilize the ensemble method to improve the robustness of different approaches. Our team achieved a score of 0.9378 at ROC-AUC metric in the private test set which is competitive to other participants.