Abstract:Reinforcement learning has shown strong promise for quadrupedal agile locomotion, even with proprioception-only sensing. In practice, however, sim-to-real gap and reward overfitting in complex terrains can produce policies that fail to transfer, while physical validation remains risky and inefficient. To address these challenges, we introduce a unified framework encompassing a Mixture-of-Experts (MoE) locomotion policy for robust multi-terrain representation with RoboGauge, a predictive assessment suite that quantifies sim-to-real transferability. The MoE policy employs a gated set of specialist experts to decompose latent terrain and command modeling, achieving superior deployment robustness and generalization via proprioception alone. RoboGauge further provides multi-dimensional proprioception-based metrics via sim-to-sim tests over terrains, difficulty levels, and domain randomizations, enabling reliable MoE policy selection without extensive physical trials. Experiments on a Unitree Go2 demonstrate robust locomotion on unseen challenging terrains, including snow, sand, stairs, slopes, and 30 cm obstacles. In dedicated high-speed tests, the robot reaches 4 m/s and exhibits an emergent narrow-width gait associated with improved stability at high velocity.
Abstract:Significant progress has been made in AI for games, including board games, MOBA, and RTS games. However, complex agents are typically developed in an embedded manner, directly accessing game state information, unlike human players who rely on noisy visual data, leading to unfair competition. Developing complex non-embedded agents remains challenging, especially in card-based RTS games with complex features and large state spaces. We propose a non-embedded offline reinforcement learning training strategy using visual inputs to achieve real-time autonomous gameplay in the RTS game Clash Royale. Due to the lack of a object detection dataset for this game, we designed an efficient generative object detection dataset for training. We extract features using state-of-the-art object detection and optical character recognition models. Our method enables real-time image acquisition, perception feature fusion, decision-making, and control on mobile devices, successfully defeating built-in AI opponents. All code is open-sourced at https://github.com/wty-yy/katacr.