Abstract:Object re-identification (ReID) is a key application of city-scale cameras. While classic ReID tasks are often considered as image retrieval, we treat them as spatiotemporal queries for locations and times in which the target object appeared. Spatiotemporal reID is challenged by the accuracy limitation in computer vision algorithms and the colossal videos from city cameras. We present Clique, a practical ReID engine that builds upon two new techniques: (1) Clique assesses target occurrences by clustering fuzzy object features extracted by ReID algorithms, with each cluster representing the general impression of a distinct object to be matched against the input; (2) to search in videos, Clique samples cameras to maximize the spatiotemporal coverage and incrementally adds cameras for processing on demand. Through evaluation on 25 hours of videos from 25 cameras, Clique reached a high accuracy of 0.87 (recall at 5) across 70 queries and runs at 830x of video realtime in achieving high accuracy.
Abstract:As low-cost surveillance cameras proliferate, we advocate for these cameras to be zero streaming: ingesting videos directly to their local storage and only communicating with the cloud in response to queries. To support queries over videos stored on zero-streaming cameras, we describe a system that spans the cloud and cameras. The system builds on two unconventional ideas. When ingesting video frames, a camera learns accurate knowledge on a sparse sample of frames, rather than learning inaccurate knowledge on all frames; in executing one query, a camera processes frames in multiple passes with multiple operators trained and picked by the cloud during the query, rather than one-pass processing with operator(s) decided ahead of the query. On diverse queries over 720-hour videos and with typical wireless network bandwidth and low-cost camera hardware, our system runs at more than 100x video realtime. It outperforms competitive alternative designs by at least 4x and up to two orders of magnitude.