Abstract:We present a new implementation of the LLM-driven genetic algorithm {\it funsearch}, whose aim is to generate examples of interest to mathematicians and which has already had some success in problems in extremal combinatorics. Our implementation is designed to be useful in practice for working mathematicians; it does not require expertise in machine learning or access to high-performance computing resources. Applying {\it funsearch} to a new problem involves modifying a small segment of Python code and selecting a large language model (LLM) from one of many third-party providers. We benchmarked our implementation on three different problems, obtaining metrics that may inform applications of {\it funsearch} to new problems. Our results demonstrate that {\it funsearch} successfully learns in a variety of combinatorial and number-theoretic settings, and in some contexts learns principles that generalize beyond the problem originally trained on.
Abstract:The string theory landscape may include a multitude of ultraviolet embeddings of the Standard Model, but identifying these has proven difficult due to the enormous number of available string compactifications. Genetic Algorithms (GAs) represent a powerful class of discrete optimisation techniques that can efficiently deal with the immensity of the string landscape, especially when enhanced with input from quantum annealers. In this letter we focus on geometric compactifications of the $E_8\times E_8$ heterotic string theory compactified on smooth Calabi-Yau threefolds with Abelian bundles. We make use of analytic formulae for bundle-valued cohomology to impose the entire range of spectrum requirements, something that has not been possible so far. For manifolds with a relatively low number of Kahler parameters we compare the GA search results with results from previous systematic scans, showing that GAs can find nearly all the viable solutions while visiting only a tiny fraction of the solution space. Moreover, we carry out GA searches on manifolds with a larger numbers of Kahler parameters where systematic searches are not feasible.
Abstract:We use reinforcement learning as a means of constructing string compactifications with prescribed properties. Specifically, we study heterotic SO(10) GUT models on Calabi-Yau three-folds with monad bundles, in search of phenomenologically promising examples. Due to the vast number of bundles and the sparseness of viable choices, methods based on systematic scanning are not suitable for this class of models. By focusing on two specific manifolds with Picard numbers two and three, we show that reinforcement learning can be used successfully to explore monad bundles. Training can be accomplished with minimal computing resources and leads to highly efficient policy networks. They produce phenomenologically promising states for nearly 100% of episodes and within a small number of steps. In this way, hundreds of new candidate standard models are found.