Abstract:We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.
Abstract:The training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This paper presents a novel approach to NN training using Adiabatic Quantum Computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimisation problems. We propose a universal AQC method that can be implemented on gate quantum computers, allowing for a broad range of Hamiltonians and thus enabling the training of expressive neural networks. We apply this approach to various neural networks with continuous, discrete, and binary weights. Our results indicate that AQC can very efficiently find the global minimum of the loss function, offering a promising alternative to classical training methods.
Abstract:The string theory landscape may include a multitude of ultraviolet embeddings of the Standard Model, but identifying these has proven difficult due to the enormous number of available string compactifications. Genetic Algorithms (GAs) represent a powerful class of discrete optimisation techniques that can efficiently deal with the immensity of the string landscape, especially when enhanced with input from quantum annealers. In this letter we focus on geometric compactifications of the $E_8\times E_8$ heterotic string theory compactified on smooth Calabi-Yau threefolds with Abelian bundles. We make use of analytic formulae for bundle-valued cohomology to impose the entire range of spectrum requirements, something that has not been possible so far. For manifolds with a relatively low number of Kahler parameters we compare the GA search results with results from previous systematic scans, showing that GAs can find nearly all the viable solutions while visiting only a tiny fraction of the solution space. Moreover, we carry out GA searches on manifolds with a larger numbers of Kahler parameters where systematic searches are not feasible.
Abstract:Artificial neural networks are at the heart of modern deep learning algorithms. We describe how to embed and train a general neural network in a quantum annealer without introducing any classical element in training. To implement the network on a state-of-the-art quantum annealer, we develop three crucial ingredients: binary encoding the free parameters of the network, polynomial approximation of the activation function, and reduction of binary higher-order polynomials into quadratic ones. Together, these ideas allow encoding the loss function as an Ising model Hamiltonian. The quantum annealer then trains the network by finding the ground state. We implement this for an elementary network and illustrate the advantages of quantum training: its consistency in finding the global minimum of the loss function and the fact that the network training converges in a single annealing step, which leads to short training times while maintaining a high classification performance. Our approach opens a novel avenue for the quantum training of general machine learning models.
Abstract:We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare its properties directly with those of the thermal 2D Ising model. These properties include an Ising-like phase transition that can be induced by either a change in 'quantum-ness' of the theory, or by a scaling the Ising couplings up or down. This behaviour is in accord with what is expected from the physical understanding of the quantum system. We then go on to demonstrate the efficacy of the quantum annealer at minimising several increasingly hard two dimensional potentials. For all the potentials we find the general behaviour that Nelder-Mead and gradient descent methods are very susceptible to becoming trapped in false minima, while the thermal anneal method is somewhat better at discovering the true minimum. However, and despite current limitations on its size, the quantum annealer performs a minimisation very markedly better than any of these classical techniques. A quantum anneal can be designed so that the system almost never gets trapped in a false minimum, and rapidly and successfully minimises the potentials.