Abstract:The training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This paper presents a novel approach to NN training using Adiabatic Quantum Computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimisation problems. We propose a universal AQC method that can be implemented on gate quantum computers, allowing for a broad range of Hamiltonians and thus enabling the training of expressive neural networks. We apply this approach to various neural networks with continuous, discrete, and binary weights. Our results indicate that AQC can very efficiently find the global minimum of the loss function, offering a promising alternative to classical training methods.
Abstract:We use a Convolutional Neural Network (CNN) to identify the relevant features in the thermodynamical phases of a simulated three-dimensional spin-lattice system with ferromagnetic and Dzyaloshinskii-Moriya (DM) interactions. Such features include (anti-)skyrmions, merons, and helical and ferromagnetic states. We use a multi-label classification framework, which is flexible enough to accommodate states that mix different features and phases. We then train the CNN to predict the features of the final state from snapshots of intermediate states of the simulation. The trained model allows identifying the different phases reliably and early in the formation process. Thus, the CNN can significantly speed up the phase diagram calculations by predicting the final phase before the spin-lattice Monte Carlo sampling has converged. We show the prowess of this approach by generating phase diagrams with significantly shorter simulation times.
Abstract:We present a general method, called Qade, for solving differential equations using a quantum annealer. The solution is obtained as a linear combination of a set of basis functions. On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous terms. We test the method with several examples and find that state-of-the-art quantum annealers can find the solution accurately for problems requiring a small enough function basis. We provide a Python package implementing the method at gitlab.com/jccriado/qade.
Abstract:We present Elvet, a Python package for solving differential equations and variational problems using machine learning methods. Elvet can deal with any system of coupled ordinary or partial differential equations with arbitrary initial and boundary conditions. It can also minimize any functional that depends on a collection of functions of several variables while imposing constraints on them. The solution to any of these problems is represented as a neural network trained to produce the desired function.