Abstract:To develop autonomous agents capable of executing complex, multi-step decision-making tasks as specified by humans in natural language, existing reinforcement learning approaches typically require expensive labeled datasets or access to real-time experimentation. Moreover, conventional methods often face difficulties in generalizing to unseen goals and states, thereby limiting their practical applicability. This paper presents TEDUO, a novel training pipeline for offline language-conditioned policy learning. TEDUO operates on easy-to-obtain, unlabeled datasets and is suited for the so-called in-the-wild evaluation, wherein the agent encounters previously unseen goals and states. To address the challenges posed by such data and evaluation settings, our method leverages the prior knowledge and instruction-following capabilities of large language models (LLMs) to enhance the fidelity of pre-collected offline data and enable flexible generalization to new goals and states. Empirical results demonstrate that the dual role of LLMs in our framework-as data enhancers and generalizers-facilitates both effective and data-efficient learning of generalizable language-conditioned policies.
Abstract:Constructing valid prediction intervals rather than point estimates is a well-established approach for uncertainty quantification in the regression setting. Models equipped with this capacity output an interval of values in which the ground truth target will fall with some prespecified probability. This is an essential requirement in many real-world applications where simple point predictions' inability to convey the magnitude and frequency of errors renders them insufficient for high-stakes decisions. Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the (non-parametric) distribution of outputs. This method is simple, computationally inexpensive, interpretable, assumption-free, and effective. However, it does require that the specific quantiles being learned are chosen a priori. This results in (a) intervals that are arbitrarily symmetric around the median which is sub-optimal for realistic skewed distributions, or (b) learning an excessive number of intervals. In this work, we propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint whilst maintaining its strengths. We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities (e.g. mean width) whilst retaining the essential coverage guarantees of quantile regression.
Abstract:Large Language Models (LLMs) have demonstrated their strong ability to assist people and show "sparks of intelligence". However, several open challenges hinder their wider application: such as concerns over privacy, tendencies to produce hallucinations, and difficulties in handling long contexts. In this work, we address those challenges by introducing the Retrieval-Augmented Thought Process (RATP). Given access to external knowledge, RATP formulates the thought generation of LLMs as a multiple-step decision process. To optimize such a thought process, RATP leverages Monte-Carlo Tree Search, and learns a Q-value estimator that permits cost-efficient inference. In addressing the task of question-answering with private data, where ethical and security concerns limit LLM training methods, RATP achieves a 50% improvement over existing in-context retrieval-augmented language models.