Abstract:Object-relative mobile robot navigation is essential for a variety of tasks, e.g. autonomous critical infrastructure inspection, but requires the capability to extract semantic information about the objects of interest from raw sensory data. While deep learning-based (DL) methods excel at inferring semantic object information from images, such as class and relative 6 degree of freedom (6-DoF) pose, they are computationally demanding and thus often not suitable for payload constrained mobile robots. In this letter we present a real-time capable unmanned aerial vehicle (UAV) system for object-relative, closed-loop navigation with a minimal sensor configuration consisting of an inertial measurement unit (IMU) and RGB camera. Utilizing a DL-based object pose estimator, solely trained on synthetic data and optimized for companion board deployment, the object-relative pose measurements are fused with the IMU data to perform object-relative localization. We conduct multiple real-world experiments to validate the performance of our system for the challenging use case of power pole inspection. An example closed-loop flight is presented in the supplementary video.
Abstract:The capability to extract task specific, semantic information from raw sensory data is a crucial requirement for many applications of mobile robotics. Autonomous inspection of critical infrastructure with Unmanned Aerial Vehicles (UAVs), for example, requires precise navigation relative to the structure that is to be inspected. Recently, Artificial Intelligence (AI)-based methods have been shown to excel at extracting semantic information such as 6 degree-of-freedom (6-DoF) poses of objects from images. In this paper, we propose a method combining a state-of-the-art AI-based pose estimator for objects in camera images with data from an inertial measurement unit (IMU) for 6-DoF multi-object relative state estimation of a mobile robot. The AI-based pose estimator detects multiple objects of interest in camera images along with their relative poses. These measurements are fused with IMU data in a state-of-the-art sensor fusion framework. We illustrate the feasibility of our proposed method with real world experiments for different trajectories and number of arbitrarily placed objects. We show that the results can be reliably reproduced due to the self-calibrating capabilities of our approach.
Abstract:Accurate 6D object pose estimation is an important task for a variety of robotic applications such as grasping or localization. It is a challenging task due to object symmetries, clutter and occlusion, but it becomes more challenging when additional information, such as depth and 3D models, is not provided. We present a transformer-based approach that takes an RGB image as input and predicts a 6D pose for each object in the image. Besides the image, our network does not require any additional information such as depth maps or 3D object models. First, the image is passed through an object detector to generate feature maps and to detect objects. Then, the feature maps are fed into a transformer with the detected bounding boxes as additional information. Afterwards, the output object queries are processed by a separate translation and rotation head. We achieve state-of-the-art results for RGB-only approaches on the challenging YCB-V dataset. We illustrate the suitability of the resulting model as pose sensor for a 6-DoF state estimation task. Code is available at https://github.com/aau-cns/poet.