Abstract:Mild cognitive impairment (MCI), often linked to early neurodegeneration, is characterized by subtle cognitive declines and disruptions in brain connectivity. The present study offers a detailed analysis of topological changes associated with MCI, focusing on two subtypes: Early MCI and Late MCI. This analysis utilizes fMRI time series data from two distinct populations: the publicly available ADNI dataset (Western cohort) and the in-house TLSA dataset (Indian Urban cohort). Persistent Homology, a topological data analysis method, is employed with two distinct filtration techniques - Vietoris-Rips and graph filtration-for classifying MCI subtypes. For Vietoris-Rips filtration, inter-ROI Wasserstein distance matrices between persistent diagrams are used for classification, while graph filtration relies on the top ten most persistent homology features. Comparative analysis shows that the Vietoris-Rips filtration significantly outperforms graph filtration, capturing subtle variations in brain connectivity with greater accuracy. The Vietoris-Rips filtration method achieved the highest classification accuracy of 85.7\% for distinguishing between age and gender matched healthy controls and MCI, whereas graph filtration reached a maximum accuracy of 71.4\% for the same task. This superior performance highlights the sensitivity of Vietoris-Rips filtration in detecting intricate topological features associated with neurodegeneration. The findings underscore the potential of persistent homology, particularly when combined with the Wasserstein distance, as a powerful tool for early diagnosis and precise classification of cognitive impairments, offering valuable insights into brain connectivity changes in MCI.
Abstract:Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity. The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of MCI subjects (Early/Late MCI). To achieve this, fMRI time series from two distinct populations are investigated: (i) the publicly accessible ADNI dataset and (ii) our in-house dataset. The study utilizes sliding window embedding to convert each fMRI time series into a sequence of 3-dimensional vectors, facilitating the assessment of changes in regional brain topology. Distinct persistence diagrams are computed for Betti descriptors of dimension-0, 1, and 2. Wasserstein distance metric is used to quantify differences in topological characteristics. We have examined both (i) ROI-specific inter-subject interactions and (ii) subject-specific inter-ROI interactions. Further, a new deep learning model is proposed for classification, achieving a maximum classification accuracy of 95% for the ADNI dataset and 85% for the in-house dataset. This methodology is further adapted for the differential diagnosis of MCI sub-types, resulting in a peak accuracy of 76.5%, 91.1% and 80% in classifying HC Vs. EMCI, HC Vs. LMCI and EMCI Vs. LMCI, respectively. We showed that the proposed approach surpasses current state-of-the-art techniques designed for classifying MCI and its sub-types using fMRI.
Abstract:Alterations in Heart Rate (HR) and Heart Rate Variability (HRV) can reflect autonomic dysfunction associated with neurodegeneration. We investigate the influence of Mild Cognitive Impairment (MCI) on HR and its variability measures in the Indian population by designing a complete signal processing pipeline to detect the R-wave peaks and compute HR and HRV features from ECG recordings of 10 seconds, for point-of-care applications. The study cohort involves 297 urban participants, among which 48.48% are male and 51.51% are female. From the Addenbrooke's Cognitive Examination-III (ACE-III), MCI is detected in 19.19% of participants and the rest, 80.8% of them are cognitively healthy. Statistical features like central tendency (mean and root mean square (RMS) of the Normal-to-Normal (NN) intervals) and dispersion (standard deviation (SD) of all NN intervals (SDNN) and root mean square of successive differences of NN intervals (RMSSD)) of beat-to-beat intervals are computed. The Wilcoxon rank sum test reveals that mean of NN intervals (p = 0.0021), the RMS of NN intervals (p = 0.0014), the SDNN (p = 0.0192) and the RMSSD (p = 0.0206) values differ significantly between MCI and non-MCI classes, for a level of significance, 0.05. Machine learning classifiers like, Support Vector Machine (SVM), Discriminant Analysis (DA) and Naive Bayes (NB) driven by mean NN intervals, RMS, SDNN and RMSSD, show a high accuracy of 80.80% on each individual feature input. Individuals with MCI are observed to have comparatively higher HR than healthy subjects. HR and its variability can be considered as potential biomarkers for detecting MCI.
Abstract:Time series from different regions of interest (ROI) of default mode network (DMN) from Functional Magnetic Resonance Imaging (fMRI) can reveal significant differences between healthy and unhealthy people. Here, we propose the utility of an existing metric quantifying the lack/presence of structure in a signal called, "deviation from stochasticity" (DS) measure to characterize resting-state fMRI time series. The hypothesis is that differences in the level of structure in the time series can lead to discrimination between the subject groups. In this work, an autoencoder-based model is utilized to learn efficient representations of data by training the network to reconstruct its input data. The proposed methodology is applied on fMRI time series of 50 healthy individuals and 50 subjects with Alzheimer's Disease (AD), obtained from publicly available ADNI database. DS measure for healthy fMRI as expected turns out to be different compared to that of AD. Peak classification accuracy of 95% was obtained using Gradient Boosting classifier, using the DS measure applied on 100 subjects.