Abstract:Retinal optical coherence tomography (OCT) images are the biomarkers for neurodegenerative diseases, which are rising in prevalence. Early detection of Alzheimer's disease using retinal OCT is a primary challenging task. This work utilizes advanced deep learning techniques to classify retinal OCT images of subjects with Alzheimer's disease (AD) and healthy controls (CO). The goal is to enhance diagnostic capabilities through efficient image analysis. In the proposed model, Raw OCT images have been preprocessed with ImageJ and given to various deep-learning models to evaluate the accuracy. The best classification architecture is TransNetOCT, which has an average accuracy of 98.18% for input OCT images and 98.91% for segmented OCT images for five-fold cross-validation compared to other models, and the Swin Transformer model has achieved an accuracy of 93.54%. The evaluation accuracy metric demonstrated TransNetOCT and Swin transformer models capability to classify AD and CO subjects reliably, contributing to the potential for improved diagnostic processes in clinical settings.
Abstract:Correlation filter plays a major role in improved tracking performance compared to existing trackers. The tracker uses the adaptive correlation response to predict the location of the target. Many varieties of correlation trackers were proposed recently with high accuracy and frame rates. The paper proposes a method to select a single background patch to have a better tracking performance. The paper also contributes a variant of correlation filter by modifying the filter with image restoration filters. The approach is validated using Object Tracking Benchmark sequences.
Abstract:One approach, for understanding human brain functioning, is to analyze the changes in the brain while performing cognitive tasks. Towards this, Functional Magnetic Resonance (fMR) images of subjects performing well-defined tasks are widely utilized for task-specific analyses. In this work, we propose a procedure to enable classification between two chosen cognitive tasks, using their respective fMR image sequences. The time series of expert-marked anatomically-mapped relevant voxels are processed and fed as input to the classical Naive Bayesian and SVM classifiers. The processing involves use of random sieve function, phase information in the data transformed using Fourier and Hilbert transformations. This processing results in improved classification, as against using the voxel intensities directly, as illustrated. The novelty of the proposed method lies in utilizing the phase information in the transformed domain, for classifying between the cognitive tasks along with random sieve function chosen with a particular probability distribution. The proposed classification procedure is applied on a publicly available dataset, StarPlus data, with 6 subjects performing the two distinct cognitive tasks of watching either a picture or a sentence. The classification accuracy stands at an average of 65.6%(using Naive Bayes classifier) and 76.4%(using SVM classifier) for raw data. The corresponding classification accuracy stands at 96.8% and 97.5% for Fourier transformed data. For Hilbert transformed data, it is 93.7% and 99%, for 6 subjects, on 2 cognitive tasks.