Abstract:Mild cognitive impairment (MCI), often linked to early neurodegeneration, is characterized by subtle cognitive declines and disruptions in brain connectivity. The present study offers a detailed analysis of topological changes associated with MCI, focusing on two subtypes: Early MCI and Late MCI. This analysis utilizes fMRI time series data from two distinct populations: the publicly available ADNI dataset (Western cohort) and the in-house TLSA dataset (Indian Urban cohort). Persistent Homology, a topological data analysis method, is employed with two distinct filtration techniques - Vietoris-Rips and graph filtration-for classifying MCI subtypes. For Vietoris-Rips filtration, inter-ROI Wasserstein distance matrices between persistent diagrams are used for classification, while graph filtration relies on the top ten most persistent homology features. Comparative analysis shows that the Vietoris-Rips filtration significantly outperforms graph filtration, capturing subtle variations in brain connectivity with greater accuracy. The Vietoris-Rips filtration method achieved the highest classification accuracy of 85.7\% for distinguishing between age and gender matched healthy controls and MCI, whereas graph filtration reached a maximum accuracy of 71.4\% for the same task. This superior performance highlights the sensitivity of Vietoris-Rips filtration in detecting intricate topological features associated with neurodegeneration. The findings underscore the potential of persistent homology, particularly when combined with the Wasserstein distance, as a powerful tool for early diagnosis and precise classification of cognitive impairments, offering valuable insights into brain connectivity changes in MCI.