Abstract:Mild cognitive impairment (MCI), often linked to early neurodegeneration, is characterized by subtle cognitive declines and disruptions in brain connectivity. The present study offers a detailed analysis of topological changes associated with MCI, focusing on two subtypes: Early MCI and Late MCI. This analysis utilizes fMRI time series data from two distinct populations: the publicly available ADNI dataset (Western cohort) and the in-house TLSA dataset (Indian Urban cohort). Persistent Homology, a topological data analysis method, is employed with two distinct filtration techniques - Vietoris-Rips and graph filtration-for classifying MCI subtypes. For Vietoris-Rips filtration, inter-ROI Wasserstein distance matrices between persistent diagrams are used for classification, while graph filtration relies on the top ten most persistent homology features. Comparative analysis shows that the Vietoris-Rips filtration significantly outperforms graph filtration, capturing subtle variations in brain connectivity with greater accuracy. The Vietoris-Rips filtration method achieved the highest classification accuracy of 85.7\% for distinguishing between age and gender matched healthy controls and MCI, whereas graph filtration reached a maximum accuracy of 71.4\% for the same task. This superior performance highlights the sensitivity of Vietoris-Rips filtration in detecting intricate topological features associated with neurodegeneration. The findings underscore the potential of persistent homology, particularly when combined with the Wasserstein distance, as a powerful tool for early diagnosis and precise classification of cognitive impairments, offering valuable insights into brain connectivity changes in MCI.
Abstract:Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity. The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of MCI subjects (Early/Late MCI). To achieve this, fMRI time series from two distinct populations are investigated: (i) the publicly accessible ADNI dataset and (ii) our in-house dataset. The study utilizes sliding window embedding to convert each fMRI time series into a sequence of 3-dimensional vectors, facilitating the assessment of changes in regional brain topology. Distinct persistence diagrams are computed for Betti descriptors of dimension-0, 1, and 2. Wasserstein distance metric is used to quantify differences in topological characteristics. We have examined both (i) ROI-specific inter-subject interactions and (ii) subject-specific inter-ROI interactions. Further, a new deep learning model is proposed for classification, achieving a maximum classification accuracy of 95% for the ADNI dataset and 85% for the in-house dataset. This methodology is further adapted for the differential diagnosis of MCI sub-types, resulting in a peak accuracy of 76.5%, 91.1% and 80% in classifying HC Vs. EMCI, HC Vs. LMCI and EMCI Vs. LMCI, respectively. We showed that the proposed approach surpasses current state-of-the-art techniques designed for classifying MCI and its sub-types using fMRI.
Abstract:Multi-channel ECG-based cardiac disorders detection has an impact on cardiac care and treatment. Limitations of existing methods included variation in ECG waveforms due to the location of electrodes, high non-linearity in the signal, and amplitude measurement in millivolts. The present study reports a non-linear analysis-based methodology that utilizes Recurrence plot visualization. The patterned occurrence of well-defined structures, such as the QRS complex, can be exploited effectively using Recurrence plots. This Recurrence-based method is applied to the publicly available Physikalisch-Technische Bundesanstalt (PTB) dataset from PhysioNet database, where we studied four classes of different cardiac disorders (Myocardial infarction, Bundle branch blocks, Cardiomyopathy, and Dysrhythmia) and healthy controls, achieving an impressive classification accuracy of 100%. Additionally, t-SNE plot visualizations of the latent space embeddings derived from Recurrence plots and Recurrence Quantification Analysis features reveal a clear demarcation between the considered cardiac disorders and healthy individuals, demonstrating the potential of this approach.
Abstract:Recent advances in molecular and genetic research have identified a diverse range of brain tumor sub-types, shedding light on differences in their molecular mechanisms, heterogeneity, and origins. The present study performs whole-brain connectome analysis using diffusionweighted images. To achieve this, both graph theory and persistent homology - a prominent approach in topological data analysis are employed in order to quantify changes in the structural connectivity of the wholebrain connectome in subjects with brain tumors. Probabilistic tractography is used to map the number of streamlines connecting 84 distinct brain regions, as delineated by the Desikan-Killiany atlas from FreeSurfer. These streamline mappings form the connectome matrix, on which persistent homology based analysis and graph theoretical analysis are executed to evaluate the discriminatory power between tumor sub-types that include meningioma and glioma. A detailed statistical analysis is conducted on persistent homology-derived topological features and graphical features to identify the brain regions where differences between study groups are statistically significant (p < 0.05). For classification purpose, graph-based local features are utilized, achieving a highest accuracy of 88%. In classifying tumor sub-types, an accuracy of 80% is attained. The findings obtained from this study underscore the potential of persistent homology and graph theoretical analysis of the whole-brain connectome in detecting alterations in structural connectivity patterns specific to different types of brain tumors.
Abstract:Recent advances in neuroimaging have enabled studies in functional connectivity (FC) of human brain, alongside investigation of the neuronal basis of cognition. One important FC study is the representation of vision in human brain. The release of publicly available dataset BOLD5000 has made it possible to study the brain dynamics during visual tasks in greater detail. In this paper, a comprehensive analysis of fMRI time series (TS) has been performed to explore different types of visual brain networks (VBN). The novelty of this work lies in (1) constructing VBN with consistently significant direct connectivity using both marginal and partial correlation, which is further analyzed using graph theoretic measures, (2) classification of VBNs as formed by image complexity-specific TS, using graphical features. In image complexity-specific VBN classification, XGBoost yields average accuracy in the range of 86.5% to 91.5% for positively correlated VBN, which is 2% greater than that using negative correlation. This result not only reflects the distinguishing graphical characteristics of each image complexity-specific VBN, but also highlights the importance of studying both positively correlated and negatively correlated VBN to understand the how differently brain functions while viewing different complexities of real-world images.
Abstract:In this study, we present a technique that spans multi-scale views (global scale -- meaning brain network-level and local scale -- examining each individual ROI that constitutes the network) applied to resting-state fMRI volumes. Deep learning based classification is utilized in understanding neurodegeneration. The novelty of the proposed approach lies in utilizing two extreme scales of analysis. One branch considers the entire network within graph-analysis framework. Concurrently, the second branch scrutinizes each ROI within a network independently, focusing on evolution of dynamics. For each subject, graph-based approach employs partial correlation to profile the subject in a single graph where each ROI is a node, providing insights into differences in levels of participation. In contrast, non-linear analysis employs recurrence plots to profile a subject as a multichannel 2D image, revealing distinctions in underlying dynamics. The proposed approach is employed for classification of a cohort of 50 healthy control (HC) and 50 Mild Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1) reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI show greater predictability in time-series.
Abstract:This study proposes a new approach that investigates differences in topological characteristics of visual networks, which are constructed using fMRI BOLD time-series corresponding to visual datasets of COCO, ImageNet, and SUN. A publicly available BOLD5000 dataset is utilized that contains fMRI scans while viewing 5254 images of diverse complexities. The objective of this study is to examine how network topology differs in response to distinct visual stimuli from these visual datasets. To achieve this, 0- and 1-dimensional persistence diagrams are computed for each visual network representing COCO, ImageNet, and SUN. For extracting suitable features from topological persistence diagrams, K-means clustering is executed. The extracted K-means cluster features are fed to a novel deep-hybrid model that yields accuracy in the range of 90%-95% in classifying these visual networks. To understand vision, this type of visual network categorization across visual datasets is important as it captures differences in BOLD signals while perceiving images with different contexts and complexities. Furthermore, distinctive topological patterns of visual network associated with each dataset, as revealed from this study, could potentially lead to the development of future neuroimaging biomarkers for diagnosing visual processing disorders like visual agnosia or prosopagnosia, and tracking changes in visual cognition over time.
Abstract:Functional MRI (fMRI) is widely used to examine brain functionality by detecting alteration in oxygenated blood flow that arises with brain activity. This work aims to investigate the neurological variation of human brain responses during viewing of images with varied complexity using fMRI time series (TS) analysis. Publicly available BOLD5000 dataset is used for this purpose which contains fMRI scans while viewing 5254 distinct images of diverse categories, drawn from three standard computer vision datasets: COCO, Imagenet and SUN. To understand vision, it is important to study how brain functions while looking at images of diverse complexities. Our first study employs classical machine learning and deep learning strategies to classify image complexity-specific fMRI TS, represents instances when images from COCO, Imagenet and SUN datasets are seen. The implementation of this classification across visual datasets holds great significance, as it provides valuable insights into the fluctuations in BOLD signals when perceiving images of varying complexities. Subsequently, temporal semantic segmentation is also performed on whole fMRI TS to segment these time instances. The obtained result of this analysis has established a baseline in studying how differently human brain functions while looking into images of diverse complexities. Therefore, accurate identification and distinguishing of variations in BOLD signals from fMRI TS data serves as a critical initial step in vision studies, providing insightful explanations for how static images with diverse complexities are perceived.
Abstract:Functional MRI (fMRI) is widely used to examine brain functionality by detecting alteration in oxygenated blood flow that arises with brain activity. In this study, complexity specific image categorization across different visual datasets is performed using fMRI time series (TS) to understand differences in neuronal activities related to vision. Publicly available BOLD5000 dataset is used for this purpose, containing fMRI scans while viewing 5254 images of diverse categories, drawn from three standard computer vision datasets: COCO, ImageNet and SUN. To understand vision, it is important to study how brain functions while looking at different images. To achieve this, spatial encoding of fMRI BOLD TS has been performed that uses classical Gramian Angular Field (GAF) and Markov Transition Field (MTF) to obtain 2D BOLD TS, representing images of COCO, Imagenet and SUN. For classification, individual GAF and MTF features are fed into regular CNN. Subsequently, parallel CNN model is employed that uses combined 2D features for classifying images across COCO, Imagenet and SUN. The result of 2D CNN models is also compared with 1D LSTM and Bi-LSTM that utilizes raw fMRI BOLD signal for classification. It is seen that parallel CNN model outperforms other network models with an improvement of 7% for multi-class classification. Clinical relevance- The obtained result of this analysis establishes a baseline in studying how differently human brain functions while looking at images of diverse complexities.
Abstract:Structural MRI(S-MRI) is one of the most versatile imaging modality that revolutionized the anatomical study of brain in past decades. The corpus callosum (CC) is the principal white matter fibre tract, enabling all kinds of inter-hemispheric communication. Thus, subtle changes in CC might be associated with various neurological disorders. The present work proposes the potential of YOLOv5-based CC detection framework to differentiate atypical Parkinsonian disorders (PD) from healthy controls (HC). With 3 rounds of hold-out validation, mean classification accuracy of 92% is obtained using the proposed method on a proprietary dataset consisting of 20 healthy subjects and 20 cases of APDs, with an improvement of 5% over SOTA methods (CC morphometry and visual texture analysis) that used the same dataset. Subsequently, in order to incorporate the explainability of YOLO predictions, Eigen CAM based heatmap is generated for identifying the most important sub-region in CC that leads to the classification. The result of Eigen CAM showed CC mid-body as the most distinguishable sub-region in classifying APDs and HC, which is in-line with SOTA methodologies and the current prevalent understanding in medicine.