Abstract:We present a self-supervised U-Net-based masked autoencoder and noise removal model designed to reconstruct original images. Once adequately trained, this model extracts high-level features, which are then combined with features from the EfficientNet B7 model. These integrated features are subsequently fed into dense layers for classification. Among the approaches of masked input and Gaussian noise removal, we selected the best U-Net reconstruction model. Additionally, we explored various configurations, including EfficientNet with attention, attention fusion of the autoencoder, and classification utilizing U-Net encoder features. The best performance was achieved with EfficientNet B7 combined with U-Net encoder features. We employed the Adam optimizer with a learning rate of 0.0001, achieving a top accuracy of 0.94 on the validation set.
Abstract:Important applications of advancements in machine learning, are in the area of healthcare, more so for neurological disorder detection. A crucial step towards understanding the neurological status, is to estimate the brain age using structural MRI volumes, in order to measure its deviation from chronological age. Factors that contribute to brain age are best captured using a data-driven approach, such as deep learning. However, it places a huge demand on the availability of diverse datasets. In this work, we propose a robust brain age estimation paradigm that utilizes a 3D CNN model, by-passing the need for model-retraining across datasets. The proposed model consists of seven 3D CNN layers, with a shared spatial attention layer incorporated at each CNN layer followed by five dense layers. The novelty of the proposed method lies in the idea of spatial attention module, with shared weights across the CNN layers. This weight sharing ensures directed attention to specific brain regions, for localizing age-related features within the data, lending robustness. The proposed model, trained on ADNI dataset comprising 516 T1 weighted MRI volumes of healthy subjects, resulted in Mean Absolute Error (MAE) of 1.662 years, which is an improvement of 1.688 years over the state-of-the-art (SOTA) model, based on disjoint test samples from the same repository. To illustrate generalizability, the same pipeline was utilized on volumes from a publicly available source called OASIS3. From OASIS3, MRI volumes 890 healthy subjects were utilized resulting in MAE of 2.265 years. Due to diversity in acquisitions across multiple sites, races and genetic factors, traditional CNN models are not guaranteed to prioritize brain regions crucial for age estimation. In contrast, the proposed weight-shared spatial attention module, directs attention on specific regions, required for the estimation.
Abstract:This paper focuses on improving object detection performance by addressing the issue of image distortions, commonly encountered in uncontrolled acquisition environments. High-level computer vision tasks such as object detection, recognition, and segmentation are particularly sensitive to image distortion. To address this issue, we propose a novel approach employing an image defilter to rectify image distortion prior to object detection. This method enhances object detection accuracy, as models perform optimally when trained on non-distorted images. Our experiments demonstrate that utilizing defiltered images significantly improves mean average precision compared to training object detection models on distorted images. Consequently, our proposed method offers considerable benefits for real-world applications plagued by image distortion. To our knowledge, the contribution lies in employing distortion-removal paradigm for object detection on images captured in natural settings. We achieved an improvement of 0.562 and 0.564 of mean Average precision on validation and test data.
Abstract:Structural MRI(S-MRI) is one of the most versatile imaging modality that revolutionized the anatomical study of brain in past decades. The corpus callosum (CC) is the principal white matter fibre tract, enabling all kinds of inter-hemispheric communication. Thus, subtle changes in CC might be associated with various neurological disorders. The present work proposes the potential of YOLOv5-based CC detection framework to differentiate atypical Parkinsonian disorders (PD) from healthy controls (HC). With 3 rounds of hold-out validation, mean classification accuracy of 92% is obtained using the proposed method on a proprietary dataset consisting of 20 healthy subjects and 20 cases of APDs, with an improvement of 5% over SOTA methods (CC morphometry and visual texture analysis) that used the same dataset. Subsequently, in order to incorporate the explainability of YOLO predictions, Eigen CAM based heatmap is generated for identifying the most important sub-region in CC that leads to the classification. The result of Eigen CAM showed CC mid-body as the most distinguishable sub-region in classifying APDs and HC, which is in-line with SOTA methodologies and the current prevalent understanding in medicine.