Abstract:Time series from different regions of interest (ROI) of default mode network (DMN) from Functional Magnetic Resonance Imaging (fMRI) can reveal significant differences between healthy and unhealthy people. Here, we propose the utility of an existing metric quantifying the lack/presence of structure in a signal called, "deviation from stochasticity" (DS) measure to characterize resting-state fMRI time series. The hypothesis is that differences in the level of structure in the time series can lead to discrimination between the subject groups. In this work, an autoencoder-based model is utilized to learn efficient representations of data by training the network to reconstruct its input data. The proposed methodology is applied on fMRI time series of 50 healthy individuals and 50 subjects with Alzheimer's Disease (AD), obtained from publicly available ADNI database. DS measure for healthy fMRI as expected turns out to be different compared to that of AD. Peak classification accuracy of 95% was obtained using Gradient Boosting classifier, using the DS measure applied on 100 subjects.
Abstract:Our study aims to utilize fMRI to identify the affected brain regions within the Default Mode Network (DMN) in subjects with Mild Cognitive Impairment (MCI), using a novel Node Significance Score (NSS). We construct subject-specific DMN graphs by employing partial correlation of Regions of Interest (ROIs) that make-up the DMN. For the DMN graph, ROIs are the nodes and edges are determined based on partial correlation. Four popular community detection algorithms (Clique Percolation Method (CPM), Louvain algorithm, Greedy Modularity and Leading Eigenvectors) are applied to determine the largest sub-community. NSS ratings are derived for each node, considering (I) frequency in the largest sub-community within a class across all subjects and (II) occurrence in the largest sub-community according to all four methods. After computing the NSS of each ROI in both healthy and MCI subjects, we quantify the score disparity to identify nodes most impacted by MCI. The results reveal a disparity exceeding 20% for 10 DMN nodes, maximally for PCC and Fusiform, showing 45.69% and 43.08% disparity. This aligns with existing medical literature, additionally providing a quantitative measure that enables the ordering of the affected ROIs. These findings offer valuable insights and could lead to treatment strategies aggressively targeting the affected nodes.
Abstract:The human brain can be conceptualized as a dynamical system. Utilizing resting state fMRI time series imaging, we can study the underlying dynamics at ear-marked Regions of Interest (ROIs) to understand structure or lack thereof. This differential behavior could be key to understanding the neurodegeneration and also to classify between healthy and Mild Cognitive Impairment (MCI) subjects. In this study, we consider 6 brain networks spanning over 160 ROIs derived from Dosenbach template, where each network consists of 25-30 ROIs. Recurrence plot, extensively used to understand evolution of time series, is employed. Representative time series at each ROI is converted to its corresponding recurrence plot visualization, which is subsequently condensed to low-dimensional feature embeddings through Autoencoders. The performance of the proposed method is shown on fMRI volumes of 100 subjects (balanced data), taken from publicly available ADNI dataset. Results obtained show peak classification accuracy of 93% among the 6 brain networks, mean accuracy of 89.3% thereby illustrating promise in the proposed approach.
Abstract:In this work, we report an autoencoder-based 2D representation to classify a time-series as stochastic or non-stochastic, to understand the underlying physical process. Content-aware conversion of 1D time-series to 2D representation, that simultaneously utilizes time- and frequency-domain characteristics, is proposed. An autoencoder is trained with a loss function to learn latent space (using both time- and frequency domains) representation, that is designed to be, time-invariant. Every element of the time-series is represented as a tuple with two components, one each, from latent space representation in time- and frequency-domains, forming a binary image. In this binary image, those tuples that represent the points in the time-series, together form the ``Latent Space Signature" (LSS) of the input time-series. The obtained binary LSS images are fed to a classification network. The EfficientNetv2-S classifier is trained using 421 synthetic time-series, with fair representation from both categories. The proposed methodology is evaluated on publicly available astronomical data which are 12 distinct temporal classes of time-series pertaining to the black hole GRS 1915 + 105, obtained from RXTE satellite. Results obtained using the proposed methodology are compared with existing techniques. Concurrence in labels obtained across the classes, illustrates the efficacy of the proposed 2D representation using the latent space co-ordinates. The proposed methodology also outputs the confidence in the classification label.