Abstract:Word embeddings capture syntactic and semantic information about words. Definition modeling aims to make the semantic content in each embedding explicit, by outputting a natural language definition based on the embedding. However, existing definition models are limited in their ability to generate accurate definitions for different senses of the same word. In this paper, we introduce a new method that enables definition modeling for multiple senses. We show how a Gumble-Softmax approach outperforms baselines at matching sense-specific embeddings to definitions during training. In experiments, our multi-sense definition model improves recall over a state-of-the-art single-sense definition model by a factor of three, without harming precision.
Abstract:Distributed representations of words have been shown to capture lexical semantics, as demonstrated by their effectiveness in word similarity and analogical relation tasks. But, these tasks only evaluate lexical semantics indirectly. In this paper, we study whether it is possible to utilize distributed representations to generate dictionary definitions of words, as a more direct and transparent representation of the embeddings' semantics. We introduce definition modeling, the task of generating a definition for a given word and its embedding. We present several definition model architectures based on recurrent neural networks, and experiment with the models over multiple data sets. Our results show that a model that controls dependencies between the word being defined and the definition words performs significantly better, and that a character-level convolution layer designed to leverage morphology can complement word-level embeddings. Finally, an error analysis suggests that the errors made by a definition model may provide insight into the shortcomings of word embeddings.