Abstract:As robot deployments become more commonplace, people are likely to take on the role of supervising robots (i.e., correcting their mistakes) rather than directly teaching them. Prior works on Learning from Corrections (LfC) have relied on three key assumptions to interpret human feedback: (1) people correct the robot only when there is significant task objective divergence; (2) people can accurately predict if a correction is necessary; and (3) people trade off precision and physical effort when giving corrections. In this work, we study how two key factors (robot competency and motion legibility) affect how people provide correction feedback and their implications on these existing assumptions. We conduct a user study ($N=60$) under an LfC setting where participants supervise and correct a robot performing pick-and-place tasks. We find that people are more sensitive to suboptimal behavior by a highly competent robot compared to an incompetent robot when the motions are legible ($p=0.0015$) and predictable ($p=0.0055$). In addition, people also tend to withhold necessary corrections ($p < 0.0001$) when supervising an incompetent robot and are more prone to offering unnecessary ones ($p = 0.0171$) when supervising a highly competent robot. We also find that physical effort positively correlates with correction precision, providing empirical evidence to support this common assumption. We also find that this correlation is significantly weaker for an incompetent robot with legible motions than an incompetent robot with predictable motions ($p = 0.0075$). Our findings offer insights for accounting for competency and legibility when designing robot interaction behaviors and learning task objectives from corrections.
Abstract:Existing benchmarks often highlight the remarkable performance achieved by state-of-the-art Multimodal Foundation Models (MFMs) in leveraging temporal context for video understanding. However, how well do the models truly perform visual temporal reasoning? Our study of existing benchmarks shows that this capability of MFMs is likely overestimated as many questions can be solved by using a single, few, or out-of-order frames. To systematically examine current visual temporal reasoning tasks, we propose three principles with corresponding metrics: (1) Multi-Frame Gain, (2) Frame Order Sensitivity, and (3) Frame Information Disparity. Following these principles, we introduce TOMATO, Temporal Reasoning Multimodal Evaluation, a novel benchmark crafted to rigorously assess MFMs' temporal reasoning capabilities in video understanding. TOMATO comprises 1,484 carefully curated, human-annotated questions spanning six tasks (i.e., action count, direction, rotation, shape & trend, velocity & frequency, and visual cues), applied to 1,417 videos, including 805 self-recorded and -generated videos, that encompass human-centric, real-world, and simulated scenarios. Our comprehensive evaluation reveals a human-model performance gap of 57.3% with the best-performing model. Moreover, our in-depth analysis uncovers more fundamental limitations beyond this gap in current MFMs. While they can accurately recognize events in isolated frames, they fail to interpret these frames as a continuous sequence. We believe TOMATO will serve as a crucial testbed for evaluating the next-generation MFMs and as a call to the community to develop AI systems capable of comprehending human world dynamics through the video modality.