Abstract:Banzhaf values offer a simple and interpretable alternative to the widely-used Shapley values. We introduce Kernel Banzhaf, a novel algorithm inspired by KernelSHAP, that leverages an elegant connection between Banzhaf values and linear regression. Through extensive experiments on feature attribution tasks, we demonstrate that Kernel Banzhaf substantially outperforms other algorithms for estimating Banzhaf values in both sample efficiency and robustness to noise. Furthermore, we prove theoretical guarantees on the algorithm's performance, establishing Kernel Banzhaf as a valuable tool for interpretable machine learning.
Abstract:The Web today has millions of datasets, and the number of datasets continues to grow at a rapid pace. These datasets are not standalone entities; rather, they are intricately connected through complex relationships. Semantic relationships between datasets provide critical insights for research and decision-making processes. In this paper, we study dataset relationships from the perspective of users who discover, use, and share datasets on the Web: what relationships are important for different tasks? What contextual information might users want to know? We first present a comprehensive taxonomy of relationships between datasets on the Web and map these relationships to user tasks performed during dataset discovery. We develop a series of methods to identify these relationships and compare their performance on a large corpus of datasets generated from Web pages with schema.org markup. We demonstrate that machine-learning based methods that use dataset metadata achieve multi-class classification accuracy of 90%. Finally, we highlight gaps in available semantic markup for datasets and discuss how incorporating comprehensive semantics can facilitate the identification of dataset relationships. By providing a comprehensive overview of dataset relationships at scale, this paper sets a benchmark for future research.