Abstract:Video-based gait analysis can be defined as the task of diagnosing pathologies, such as ataxia, using videos of patients walking in front of a camera. This paper presents a graph convolution network called AtGCN for detecting ataxic gait and identifying its severity using 2D videos. The problem is especially challenging as the deviation of an ataxic gait from a healthy gait is very subtle. The datasets for ataxic gait detection are also quite small, with the largest dataset having only 149 videos. The paper addresses the first problem using special spatiotemporal graph convolution that successfully captures important gait-related features. To handle the small dataset size, a deep spatiotemporal graph convolution network pre-trained on an action recognition dataset is systematically truncated and then fine-tuned on the ataxia dataset to obtain the AtGCN model. The paper also presents an augmentation strategy that segments a video sequence into multiple gait cycles. The proposed AtGCN model then operates on a graph of body part locations belonging to a single gait cycle. The evaluation results support the strength of the proposed AtGCN model, as it outperforms the state-of-the-art in detection and severity prediction with an accuracy of 93.46% and a MAE of 0.4169, respectively.
Abstract:We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.