Abstract:Smart sensing provides an easier and convenient data-driven mechanism for monitoring and control in the built environment. Data generated in the built environment are privacy sensitive and limited. Federated learning is an emerging paradigm that provides privacy-preserving collaboration among multiple participants for model training without sharing private and limited data. The noisy labels in the datasets of the participants degrade the performance and increase the number of communication rounds for convergence of federated learning. Such large communication rounds require more time and energy to train the model. In this paper, we propose a federated learning approach to suppress the unequal distribution of the noisy labels in the dataset of each participant. The approach first estimates the noise ratio of the dataset for each participant and normalizes the noise ratio using the server dataset. The proposed approach can handle bias in the server dataset and minimizes its impact on the participants' dataset. Next, we calculate the optimal weighted contributions of the participants using the normalized noise ratio and influence of each participant. We further derive the expression to estimate the number of communication rounds required for the convergence of the proposed approach. Finally, experimental results demonstrate the effectiveness of the proposed approach over existing techniques in terms of the communication rounds and achieved performance in the built environment.
Abstract:Deep Neural Network (DNN) has gained unprecedented performance due to its automated feature extraction capability. This high order performance leads to significant incorporation of DNN models in different Internet of Things (IoT) applications in the past decade. However, the colossal requirement of computation, energy, and storage of DNN models make their deployment prohibitive on resource constraint IoT devices. Therefore, several compression techniques were proposed in recent years for reducing the storage and computation requirements of the DNN model. These techniques on DNN compression have utilized a different perspective for compressing DNN with minimal accuracy compromise. It encourages us to make a comprehensive overview of the DNN compression techniques. In this paper, we present a comprehensive review of existing literature on compressing DNN model that reduces both storage and computation requirements. We divide the existing approaches into five broad categories, i.e., network pruning, sparse representation, bits precision, knowledge distillation, and miscellaneous, based upon the mechanism incorporated for compressing the DNN model. The paper also discussed the challenges associated with each category of DNN compression techniques. Finally, we provide a quick summary of existing work under each category with the future direction in DNN compression.
Abstract:Early classification of time series has been extensively studied for minimizing class prediction delay in time-sensitive applications such as healthcare and finance. A primary task of an early classification approach is to classify an incomplete time series as soon as possible with some desired level of accuracy. Recent years have witnessed several approaches for early classification of time series. As most of the approaches have solved the early classification problem with different aspects, it becomes very important to make a thorough review of the existing solutions to know the current status of the area. These solutions have demonstrated reasonable performance in a wide range of applications including human activity recognition, gene expression based health diagnostic, industrial monitoring, and so on. In this paper, we present a systematic review of current literature on early classification approaches for both univariate and multivariate time series. We divide various existing approaches into four exclusive categories based on their proposed solution strategies. The four categories include prefix based, shapelet based, model based, and miscellaneous approaches. The authors also discuss the applications of early classification in many areas including industrial monitoring, intelligent transportation, and medical. Finally, we provide a quick summary of the current literature with future research directions.