Abstract:Federated Learning (FL) is a distributed learning technique that maintains data privacy by providing a decentralized training method for machine learning models using distributed big data. This promising Federated Learning approach has also gained popularity in bioinformatics, where the privacy of biomedical data holds immense importance, especially when patient data is involved. Despite the successful implementation of Federated learning in biological sequence analysis, rigorous consideration is still required to improve accuracy in a way that data privacy should not be compromised. Additionally, the optimal integration of federated learning, especially in protein sequence analysis, has not been fully explored. We propose a deep feed-forward neural network-based enhanced federated learning method for protein sequence classification to overcome these challenges. Our method introduces novel enhancements to improve classification accuracy. We introduce dynamic weighted federated learning (DWFL) which is a federated learning-based approach, where local model weights are adjusted using weighted averaging based on their performance metrics. By assigning higher weights to well-performing models, we aim to create a more potent initial global model for the federated learning process, leading to improved accuracy. We conduct experiments using real-world protein sequence datasets to assess the effectiveness of DWFL. The results obtained using our proposed approach demonstrate significant improvements in model accuracy, making federated learning a preferred, more robust, and privacy-preserving approach for collaborative machine-learning tasks.
Abstract:In the field of biological research, it is essential to comprehend the characteristics and functions of molecular sequences. The classification of molecular sequences has seen widespread use of neural network-based techniques. Despite their astounding accuracy, these models often require a substantial number of parameters and more data collection. In this work, we present a novel approach based on the compression-based Model, motivated from \cite{jiang2023low}, which combines the simplicity of basic compression algorithms like Gzip and Bz2, with Normalized Compression Distance (NCD) algorithm to achieve better performance on classification tasks without relying on handcrafted features or pre-trained models. Firstly, we compress the molecular sequence using well-known compression algorithms, such as Gzip and Bz2. By leveraging the latent structure encoded in compressed files, we compute the Normalized Compression Distance between each pair of molecular sequences, which is derived from the Kolmogorov complexity. This gives us a distance matrix, which is the input for generating a kernel matrix using a Gaussian kernel. Next, we employ kernel Principal Component Analysis (PCA) to get the vector representations for the corresponding molecular sequence, capturing important structural and functional information. The resulting vector representations provide an efficient yet effective solution for molecular sequence analysis and can be used in ML-based downstream tasks. The proposed approach eliminates the need for computationally intensive Deep Neural Networks (DNNs), with their large parameter counts and data requirements. Instead, it leverages a lightweight and universally accessible compression-based model.