Abstract:This study addresses the challenge of fleet design optimization in the context of heterogeneous multi-robot fleets, aiming to obtain feasible designs that balance performance and costs. In the domain of autonomous multi-robot exploration, reinforcement learning agents play a central role, offering adaptability to complex terrains and facilitating collaboration among robots. However, modifying the fleet composition results in changes in the learned behavior, and training multi-robot systems using multi-agent reinforcement learning is expensive. Therefore, an exhaustive evaluation of each potential fleet design is infeasible. To tackle these hurdles, we introduce Bayesian Optimization for Fleet Design (BOFD), a framework leveraging multi-objective Bayesian Optimization to explore fleets on the Pareto front of performance and cost while accounting for uncertainty in the design space. Moreover, we establish a sub-linear bound for cumulative regret, supporting BOFD's robustness and efficacy. Extensive benchmark experiments in synthetic and simulated environments demonstrate the superiority of our framework over state-of-the-art methods, achieving efficient fleet designs with minimal fleet evaluations.
Abstract:This paper presents an analytical framework for conducting academic reviews in the field of Healthcare Systems Engineering, employing ChatGPT, a state-of-the-art tool among recent language models. We utilized 9,809 abstract paragraphs from conference presentations to systematically review the field. The framework comprises distinct analytical processes, each employing tailored prompts and the systematic use of the ChatGPT API. Through this framework, we organized the target field into 11 topic categories and conducted a comprehensive analysis covering quantitative yearly trends and detailed sub-categories. This effort explores the potential for leveraging ChatGPT to alleviate the burden of academic reviews. Furthermore, it provides valuable insights into the dynamic landscape of Healthcare Systems Engineering research.