Abstract:While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users' narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters' identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.
Abstract:Large language models for code have recently shown remarkable performance in generating executable code. However, this rapid advancement has been accompanied by many legal and ethical concerns, such as code licensing issues, code plagiarism, and malware generation, making watermarking machine-generated code a very timely problem. Despite such imminent needs, we discover that existing watermarking and machine-generated text detection methods for LLMs fail to function with code generation tasks properly. Hence, in this work, we propose a new watermarking method, SWEET, that significantly improves upon previous approaches when watermarking machine-generated code. Our proposed method selectively applies watermarking to the tokens with high enough entropy, surpassing a defined threshold. The experiments on code generation benchmarks show that our watermarked code has superior quality compared to code produced by the previous state-of-the-art LLM watermarking method. Furthermore, our watermark method also outperforms DetectGPT for the task of machine-generated code detection.