Abstract:Recently, as many studies of autonomous vehicles have been achieved for levels 4 and 5, there has been also increasing interest in the advancement of perception, decision, and control technologies, which are the three major aspects of autonomous vehicles. As for the perception technologies achieving reliable maneuvering of autonomous vehicles, object detection by using diverse sensors (e.g., LiDAR, radar, and camera) should be prioritized. These sensors require to detect objects accurately and quickly in diverse weather conditions, but they tend to have challenges to consistently detect objects in bad weather conditions with rain, snow, or fog. Thus, in this study, based on the experimentally obtained raindrop data from precipitation conditions, we constructed a novel dataset that could test diverse network model in various precipitation conditions through the CARLA simulator. Consequently, based on our novel dataset, YOLO series, a one-stage-detector, was used to quantitatively verify how much object detection performance could be decreased under various precipitation conditions from normal to extreme heavy rain situations.
Abstract:This paper issues an integrated control system of self-driving autonomous vehicles based on the personal driving preference to provide personalized comfortable driving experience to autonomous vehicle users. We propose an Occupant's Preference Metric (OPM) which is defining a preferred lateral and longitudinal acceleration region with maximum allowable jerk for users. Moreover, we propose a vehicle controller based on control parameters enabling integrated lateral and longitudinal control via preference-aware maneuvering of autonomous vehicles. The proposed system not only provides the criteria for the occupant's driving preference, but also provides a personalized autonomous self-driving style like a human driver instead of a Robocar. The simulation and experimental results demonstrated that the proposed system can maneuver the self-driving vehicle like a human driver by tracking the specified criterion of admissible acceleration and jerk.