Abstract:This report evaluates the performance of text-in text-out Large Language Models (LLMs) to understand and generate Indic languages. This evaluation is used to identify and prioritize Indic languages suited for inclusion in safety benchmarks. We conduct this study by reviewing existing evaluation studies and datasets; and a set of twenty-eight LLMs that support Indic languages. We analyze the LLMs on the basis of the training data, license for model and data, type of access and model developers. We also compare Indic language performance across evaluation datasets and find that significant performance disparities in performance across Indic languages. Hindi is the most widely represented language in models. While model performance roughly correlates with number of speakers for the top five languages, the assessment after that varies.
Abstract:Task-oriented dialogue systems are essential for applications ranging from customer service to personal assistants and are widely used across various industries. However, developing effective multi-domain systems remains a significant challenge due to the complexity of handling diverse user intents, entity types, and domain-specific knowledge across several domains. In this work, we propose DARD (Domain Assigned Response Delegation), a multi-agent conversational system capable of successfully handling multi-domain dialogs. DARD leverages domain-specific agents, orchestrated by a central dialog manager agent. Our extensive experiments compare and utilize various agent modeling approaches, combining the strengths of smaller fine-tuned models (Flan-T5-large & Mistral-7B) with their larger counterparts, Large Language Models (LLMs) (Claude Sonnet 3.0). We provide insights into the strengths and limitations of each approach, highlighting the benefits of our multi-agent framework in terms of flexibility and composability. We evaluate DARD using the well-established MultiWOZ benchmark, achieving state-of-the-art performance by improving the dialogue inform rate by 6.6% and the success rate by 4.1% over the best-performing existing approaches. Additionally, we discuss various annotator discrepancies and issues within the MultiWOZ dataset and its evaluation system.