Abstract:Autonomous driving technology nowadays targets to level 4 or beyond, but the researchers are faced with some limitations for developing reliable driving algorithms in diverse challenges. To promote the autonomous vehicles to spread widely, it is important to address safety issues on this technology. Among various safety concerns, the sensor blockage problem by severe weather conditions can be one of the most frequent threats for multi-task learning based perception algorithms during autonomous driving. To handle this problem, the importance of the generation of proper datasets is becoming more significant. In this paper, a synthetic road dataset with sensor blockage generated from real road dataset BDD100K is suggested in the format of BDD100K annotation. Rain streaks for each frame were made by an experimentally established equation and translated utilizing the image-to-image translation network based on style transfer. Using this dataset, the degradation of the diverse multi-task networks for autonomous driving, such as lane detection, driving area segmentation, and traffic object detection, has been thoroughly evaluated and analyzed. The tendency of the performance degradation of deep neural network-based perception systems for autonomous vehicle has been analyzed in depth. Finally, we discuss the limitation and the future directions of the deep neural network-based perception algorithms and autonomous driving dataset generation based on image-to-image translation.
Abstract:Recently, Reinforcement Learning (RL) has been actively researched in both academic and industrial fields. However, there exist only a few RL frameworks which are developed for researchers or students who want to study RL. In response, we propose an open-source RL framework "Join Our Reinforcement Learning framework for Developing Yours" (JORLDY). JORLDY provides more than 20 widely used RL algorithms which are implemented with Pytorch. Also, JORLDY supports multiple RL environments which include OpenAI gym, Unity ML-Agents, Mujoco, Super Mario Bros and Procgen. Moreover, the algorithmic components such as agent, network, environment can be freely customized, so that the users can easily modify and append algorithmic components. We expect that JORLDY will support various RL research and contribute further advance the field of RL. The source code of JORLDY is provided on the following Github: https://github.com/kakaoenterprise/JORLDY