Abstract:We investigate an method for quantifying city characteristics based on impressions of a sound environment. The quantification of the city characteristics will be beneficial to government policy planning, tourism projects, etc. In this study, we try to predict two soundscape impressions, meaning pleasantness and eventfulness, using sound data collected by the cloud-sensing method. The collected sounds comprise meta information of recording location using Global Positioning System. Furthermore, the soundscape impressions and sound-source features are separately assigned to the cloud-sensing sounds by assessments defined using Swedish Soundscape-Quality Protocol, assessing the quality of the acoustic environment. The prediction models are built using deep neural networks with multi-layer perceptron for the input of 10-second sound and the aerial photographs of its location. An acoustic feature comprises equivalent noise level and outputs of octave-band filters every second, and statistics of them in 10~s. An image feature is extracted from an aerial photograph using ResNet-50 and autoencoder architecture. We perform comparison experiments to demonstrate the benefit of each feature. As a result of the comparison, aerial photographs and sound-source features are efficient to predict impression information. Additionally, even if the sound-source features are predicted using acoustic and image features, the features also show fine results to predict the soundscape impression close to the result of oracle sound-source features.
Abstract:Based on the experimental results, all concepts drift types have their respective hyperparameter configurations. Simple and gradual concept drift have similar pattern which requires a smaller {\alpha} value than recurring concept drift because, in this type of drift, a new concept appear continuously, so it needs a high-frequency model adaptation. However, in recurring concepts, the new concept may repeat in the future, so the lower frequency adaptation is better. Furthermore, high-frequency model adaptation could lead to an overfitting problem. Implementing CMGMM component pruning mechanism help to control the number of the active component and improve model performance.
Abstract:This paper proposes architectures that facilitate the extrapolation of emotional expressions in deep neural network (DNN)-based text-to-speech (TTS). In this study, the meaning of "extrapolate emotional expressions" is to borrow emotional expressions from others, and the collection of emotional speech uttered by target speakers is unnecessary. Although a DNN has potential power to construct DNN-based TTS with emotional expressions and some DNN-based TTS systems have demonstrated satisfactory performances in the expression of the diversity of human speech, it is necessary and troublesome to collect emotional speech uttered by target speakers. To solve this issue, we propose architectures to separately train the speaker feature and the emotional feature and to synthesize speech with any combined quality of speakers and emotions. The architectures are parallel model (PM), serial model (SM), auxiliary input model (AIM), and hybrid models (PM&AIM and SM&AIM). These models are trained through emotional speech uttered by few speakers and neutral speech uttered by many speakers. Objective evaluations demonstrate that the performances in the open-emotion test provide insufficient information. They make a comparison with those in the closed-emotion test, but each speaker has their own manner of expressing emotion. However, subjective evaluation results indicate that the proposed models could convey emotional information to some extent. Notably, the PM can correctly convey sad and joyful emotions at a rate of >60%.