Abstract:Humans show an innate ability to learn the regularities of the world through interaction. By performing experiments in our environment, we are able to discern the causal factors of variation and infer how they affect the dynamics of our world. Analogously, here we attempt to equip reinforcement learning agents with the ability to perform experiments that facilitate a categorization of the rolled-out trajectories, and to subsequently infer the causal factors of the environment in a hierarchical manner. We introduce a novel intrinsic reward, called causal curiosity, and show that it allows our agents to learn optimal sequences of actions, and to discover causal factors in the dynamics. The learned behavior allows the agent to infer a binary quantized representation for the ground-truth causal factors in every environment. Additionally, we find that these experimental behaviors are semantically meaningful (e.g., to differentiate between heavy and light blocks, our agents learn to lift them), and are learnt in a self-supervised manner with approximately 2.5 times less data than conventional supervised planners. We show that these behaviors can be re-purposed and fine-tuned (e.g., from lifting to pushing or other downstream tasks). Finally, we show that the knowledge of causal factor representations aids zero-shot learning for more complex tasks.
Abstract:Discovering concepts (or temporal abstractions) in an unsupervised manner from demonstration data in the absence of an environment is an important problem. Organizing these discovered concepts hierarchically at different levels of abstraction is useful in discovering patterns, building ontologies, and generating tutorials from demonstration data. However, recent work to discover such concepts without access to any environment does not discover relationships (or a hierarchy) between these discovered concepts. In this paper, we present a Transformer-based concept abstraction architecture UNHCLE (pronounced uncle) that extracts a hierarchy of concepts in an unsupervised way from demonstration data. We empirically demonstrate how UNHCLE discovers meaningful hierarchies using datasets from Chess and Cooking domains. Finally, we show how UNHCLE learns meaningful language labels for concepts by using demonstration data augmented with natural language for cooking and chess. All of our code is available at https://github.com/UNHCLE/UNHCLE