Abstract:With the advent of the screen-reading era, the confidential documents displayed on the screen can be easily captured by a camera without leaving any traces. Thus, this paper proposes a novel screen-shooting resilient watermarking scheme for document image using deep neural network. By applying this scheme, when the watermarked image is displayed on the screen and captured by a camera, the watermark can be still extracted from the captured photographs. Specifically, our scheme is an end-to-end neural network with an encoder to embed watermark and a decoder to extract watermark. During the training process, a distortion layer between encoder and decoder is added to simulate the distortions introduced by screen-shooting process in real scenes, such as camera distortion, shooting distortion, light source distortion. Besides, an embedding strength adjustment strategy is designed to improve the visual quality of the watermarked image with little loss of extraction accuracy. The experimental results show that the scheme has higher robustness and visual quality than other three recent state-of-the-arts. Specially, even if the shooting distances and angles are in extreme, our scheme can also obtain high extraction accuracy.
Abstract:Watermarking is an important copyright protection technology which generally embeds the identity information into the carrier imperceptibly. Then the identity can be extracted to prove the copyright from the watermarked carrier even after suffering various attacks. Most of the existing watermarking technologies take the nature images as carriers. Different from the natural images, document images are not so rich in color and texture, and thus have less redundant information to carry watermarks. This paper proposes an end-to-end document image watermarking scheme using the deep neural network. Specifically, an encoder and a decoder are designed to embed and extract the watermark. A noise layer is added to simulate the various attacks that could be encountered in reality, such as the Cropout, Dropout, Gaussian blur, Gaussian noise, Resize, and JPEG Compression. A text-sensitive loss function is designed to limit the embedding modification on characters. An embedding strength adjustment strategy is proposed to improve the quality of watermarked image with little loss of extraction accuracy. Experimental results show that the proposed document image watermarking technology outperforms three state-of-the-arts in terms of the robustness and image quality.