Abstract:Coreset Selection (CS) identifies a subset of training data that achieves model performance comparable to using the entire dataset. Many state-of-the-art CS methods, select coresets using scores whose computation requires training the downstream model on the entire dataset and recording changes in its behavior on samples as it trains (training dynamics). These scores are inefficient to compute and hard to interpret as they do not indicate whether a sample is difficult to learn in general or only for a specific model. Our work addresses these challenges by proposing an interpretable score that gauges a sample's difficulty using human-understandable textual attributes (concepts) independent of any downstream model. Specifically, we measure the alignment between a sample's visual features and concept bottlenecks, derived via large language models, by training a linear concept bottleneck layer and compute the sample's difficulty score using it. We then use this score and a stratified sampling strategy to identify the coreset. Crucially, our score is efficiently computable without training the downstream model on the full dataset even once, leads to high-performing coresets for various downstream models, and is computable even for an unlabeled dataset. Through experiments on CIFAR-10, CIFAR-100, and ImageNet-1K, we show our coresets outperform random subsets, even at high pruning rates, and achieve model performance comparable to or better than coresets found by training dynamics-based methods.
Abstract:We introduce V-Trans4Style, an innovative algorithm tailored for dynamic video content editing needs. It is designed to adapt videos to different production styles like documentaries, dramas, feature films, or a specific YouTube channel's video-making technique. Our algorithm recommends optimal visual transitions to help achieve this flexibility using a more bottom-up approach. We first employ a transformer-based encoder-decoder network to learn recommending temporally consistent and visually seamless sequences of visual transitions using only the input videos. We then introduce a style conditioning module that leverages this model to iteratively adjust the visual transitions obtained from the decoder through activation maximization. We demonstrate the efficacy of our method through experiments conducted on our newly introduced AutoTransition++ dataset. It is a 6k video version of AutoTransition Dataset that additionally categorizes its videos into different production style categories. Our encoder-decoder model outperforms the state-of-the-art transition recommendation method, achieving improvements of 10% to 80% in Recall@K and mean rank values over baseline. Our style conditioning module results in visual transitions that improve the capture of the desired video production style characteristics by an average of around 12% in comparison to other methods when measured with similarity metrics. We hope that our work serves as a foundation for exploring and understanding video production styles further.