Abstract:The Forward-Forward (FF) Algorithm has been recently proposed to alleviate the issues of backpropagation (BP) commonly used to train deep neural networks. However, its current formulation exhibits limitations such as the generation of negative data, slower convergence, and inadequate performance on complex tasks. In this paper, we take the main ideas of FF and improve them by leveraging channel-wise competitive learning in the context of convolutional neural networks for image classification tasks. A layer-wise loss function is introduced that promotes competitive learning and eliminates the need for negative data construction. To enhance both the learning of compositional features and feature space partitioning, a channel-wise feature separator and extractor block is proposed that complements the competitive learning process. Our method outperforms recent FF-based models on image classification tasks, achieving testing errors of 0.58%, 7.69%, 21.89%, and 48.77% on MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100 respectively. Our approach bridges the performance gap between FF learning and BP methods, indicating the potential of our proposed approach to learn useful representations in a layer-wise modular fashion, enabling more efficient and flexible learning.
Abstract:Efficient traffic monitoring is playing a fundamental role in successfully tackling congestion in transportation networks. Congestion is strongly correlated with two measurable characteristics, the demand and the network density that impact the overall system behavior. At large, this system behavior is characterized through the fundamental diagram of a road segment, a region or the network. In this paper we devise an innovative way to obtain the fundamental diagram through aerial footage obtained from drone platforms. The derived methodology consists of 3 phases: vehicle detection, vehicle tracking and traffic state estimation. We elaborate on the algorithms developed for each of the 3 phases and demonstrate the applicability of the results in a real-world setting.