Abstract:Personalized news recommender systems support readers in finding the right and relevant articles in online news platforms. In this paper, we discuss the introduction of personalized, content-based news recommendations on DiePresse, a popular Austrian online news platform, focusing on two specific aspects: (i) user interface type, and (ii) popularity bias mitigation. Therefore, we conducted a two-weeks online study that started in October 2020, in which we analyzed the impact of recommendations on two user groups, i.e., anonymous and subscribed users, and three user interface types, i.e., on a desktop, mobile and tablet device. With respect to user interface types, we find that the probability of a recommendation to be seen is the highest for desktop devices, while the probability of interacting with recommendations is the highest for mobile devices. With respect to popularity bias mitigation, we find that personalized, content-based news recommendations can lead to a more balanced distribution of news articles' readership popularity in the case of anonymous users. Apart from that, we find that significant events (e.g., the COVID-19 lockdown announcement in Austria and the Vienna terror attack) influence the general consumption behavior of popular articles for both, anonymous and subscribed users.
Abstract:In this paper, we present our work to support publishers and editors in finding descriptive tags for e-books through tag recommendations. We propose a hybrid tag recommendation system for e-books, which leverages search query terms from Amazon users and e-book metadata, which is assigned by publishers and editors. Our idea is to mimic the vocabulary of users in Amazon, who search for and review e-books, and to combine these search terms with editor tags in a hybrid tag recommendation approach. In total, we evaluate 19 tag recommendation algorithms on the review content of Amazon users, which reflects the readers' vocabulary. Our results show that we can improve the performance of tag recommender systems for e-books both concerning tag recommendation accuracy, diversity as well as a novel semantic similarity metric, which we also propose in this paper.