Abstract:Natural Language Inference (NLI) evaluation is crucial for assessing language understanding models; however, popular datasets suffer from systematic spurious correlations that artificially inflate actual model performance. To address this, we propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples. We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics. This categorization significantly reduces spurious correlation measures, with examples labeled as having the highest difficulty showing markedly decreased performance and encompassing more realistic and diverse linguistic phenomena. When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset, surpassing other dataset characterization techniques. Our research addresses limitations in NLI dataset construction, providing a more authentic evaluation of model performance with implications for diverse NLU applications.
Abstract:Diacritics restoration is a mandatory step for adequately processing Romanian texts, and not a trivial one, as you generally need context in order to properly restore a character. Most previous methods which were experimented for Romanian restoration of diacritics do not use neural networks. Among those that do, there are no solutions specifically optimized for this particular language (i.e., they were generally designed to work on many different languages). Therefore we propose a novel neural architecture based on recurrent neural networks that can attend information at different levels of abstractions in order to restore diacritics.
Abstract:Answering multiple-choice questions in a setting in which no supporting documents are explicitly provided continues to stand as a core problem in natural language processing. The contribution of this article is two-fold. First, it describes a method which can be used to semantically rank documents extracted from Wikipedia or similar natural language corpora. Second, we propose a model employing the semantic ranking that holds the first place in two of the most popular leaderboards for answering multiple-choice questions: ARC Easy and Challenge. To achieve this, we introduce a self-attention based neural network that latently learns to rank documents by their importance related to a given question, whilst optimizing the objective of predicting the correct answer. These documents are considered relevant contexts for the underlying question. We have published the ranked documents so that they can be used off-the-shelf to improve downstream decision models.
Abstract:Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.