Harvard University
Abstract:Real-world health questions from patients often unintentionally embed false assumptions or premises. In such cases, safe medical communication typically involves redirection: addressing the implicit misconception and then responding to the underlying patient context, rather than the original question. While large language models (LLMs) are increasingly being used by lay users for medical advice, they have not yet been tested for this crucial competency. Therefore, in this work, we investigate how LLMs react to false premises embedded within real-world health questions. We develop a semi-automated pipeline to curate MedRedFlag, a dataset of 1100+ questions sourced from Reddit that require redirection. We then systematically compare responses from state-of-the-art LLMs to those from clinicians. Our analysis reveals that LLMs often fail to redirect problematic questions, even when the problematic premise is detected, and provide answers that could lead to suboptimal medical decision making. Our benchmark and results reveal a novel and substantial gap in how LLMs perform under the conditions of real-world health communication, highlighting critical safety concerns for patient-facing medical AI systems. Code and dataset are available at https://github.com/srsambara-1/MedRedFlag.
Abstract:Generating accurate radiology reports from medical images is a clinically important but challenging task. While current Vision Language Models (VLMs) show promise, they are prone to generating hallucinations, potentially compromising patient care. We introduce RadFlag, a black-box method to enhance the accuracy of radiology report generation. Our method uses a sampling-based flagging technique to find hallucinatory generations that should be removed. We first sample multiple reports at varying temperatures and then use a Large Language Model (LLM) to identify claims that are not consistently supported across samples, indicating that the model has low confidence in those claims. Using a calibrated threshold, we flag a fraction of these claims as likely hallucinations, which should undergo extra review or be automatically rejected. Our method achieves high precision when identifying both individual hallucinatory sentences and reports that contain hallucinations. As an easy-to-use, black-box system that only requires access to a model's temperature parameter, RadFlag is compatible with a wide range of radiology report generation models and has the potential to broadly improve the quality of automated radiology reporting.