Abstract:Speech segmentation is an essential part of speech translation (ST) systems in real-world scenarios. Since most ST models are designed to process speech segments, long-form audio must be partitioned into shorter segments before translation. Recently, data-driven approaches for the speech segmentation task have been developed. Although the approaches improve overall translation quality, a performance gap exists due to a mismatch between the models and ST systems. In addition, the prior works require large self-supervised speech models, which consume significant computational resources. In this work, we propose a segmentation model that achieves better speech translation quality with a small model size. We propose an ASR-with-punctuation task as an effective pre-training strategy for the segmentation model. We also show that proper integration of the speech segmentation model into the underlying ST system is critical to improve overall translation quality at inference time.
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.