Abstract:Human activity recognition (HAR) using ambient sensors in smart homes has numerous applications for human healthcare and wellness. However, building general-purpose HAR models that can be deployed to new smart home environments requires a significant amount of annotated sensor data and training overhead. Most smart homes vary significantly in their layouts, i.e., floor plans and the specifics of sensors embedded, resulting in low generalizability of HAR models trained for specific homes. We address this limitation by introducing a novel, layout-agnostic modeling approach for HAR systems in smart homes that utilizes the transferrable representational capacity of natural language descriptions of raw sensor data. To this end, we generate Textual Descriptions Of Sensor Triggers (TDOST) that encapsulate the surrounding trigger conditions and provide cues for underlying activities to the activity recognition models. Leveraging textual embeddings, rather than raw sensor data, we create activity recognition systems that predict standard activities across homes without either (re-)training or adaptation on target homes. Through an extensive evaluation, we demonstrate the effectiveness of TDOST-based models in unseen smart homes through experiments on benchmarked CASAS datasets. Furthermore, we conduct a detailed analysis of how the individual components of our approach affect downstream activity recognition performance.
Abstract:Sensor-based human activity recognition (HAR) has been an active research area, owing to its applications in smart environments, assisted living, fitness, healthcare, etc. Recently, deep learning based end-to-end training has resulted in state-of-the-art performance in domains such as computer vision and natural language, where large amounts of annotated data are available. However, large quantities of annotated data are not available for sensor-based HAR. Moreover, the real-world settings on which the HAR is performed differ in terms of sensor modalities, classification tasks, and target users. To address this problem, transfer learning has been employed extensively. In this survey, we focus on these transfer learning methods in the application domains of smart home and wearables-based HAR. In particular, we provide a problem-solution perspective by categorizing and presenting the works in terms of their contributions and the challenges they address. We also present an updated view of the state-of-the-art for both application domains. Based on our analysis of 205 papers, we highlight the gaps in the literature and provide a roadmap for addressing them. This survey provides a reference to the HAR community, by summarizing the existing works and providing a promising research agenda.
Abstract:Indices quantifying the performance of classifiers under class-imbalance, often suffer from distortions depending on the constitution of the test set or the class-specific classification accuracy, creating difficulties in assessing the merit of the classifier. We identify two fundamental conditions that a performance index must satisfy to be respectively resilient to altering number of testing instances from each class and the number of classes in the test set. In light of these conditions, under the effect of class imbalance, we theoretically analyze four indices commonly used for evaluating binary classifiers and five popular indices for multi-class classifiers. For indices violating any of the conditions, we also suggest remedial modification and normalization. We further investigate the capability of the indices to retain information about the classification performance over all the classes, even when the classifier exhibits extreme performance on some classes. Simulation studies are performed on high dimensional deep representations of subset of the ImageNet dataset using four state-of-the-art classifiers tailored for handling class imbalance. Finally, based on our theoretical findings and empirical evidence, we recommend the appropriate indices that should be used to evaluate the performance of classifiers in presence of class-imbalance.