Abstract:Recent advances in deep learning have enabled researchers to explore tasks at the intersection of computer vision and natural language processing, such as image captioning, visual question answering, visual dialogue, and visual language navigation. Taking inspiration from image captioning, the task of radiology report generation aims at automatically generating radiology reports by having a comprehensive understanding of medical images. However, automatically generating radiology reports from medical images is a challenging task due to the complexity, diversity, and nature of medical images. In this paper, we outline the design of a robust radiology report generation system by integrating different modules and highlighting best practices drawing upon lessons from our past work and also from relevant studies in the literature. We also discuss the impact of integrating different components to form a single integrated system. We believe that these best practices, when implemented, could improve automatic radiology report generation, augment radiologists in decision making, and expedite diagnostic workflow, in turn improve healthcare and save human lives.
Abstract:Recent developments in the field of Natural Language Processing, especially language models such as the transformer have brought state-of-the-art results in language understanding and language generation. In this work, we investigate the use of the transformer model for radiology report generation from chest X-rays. We also highlight limitations in evaluating radiology report generation using only the standard language generation metrics. We then applied a transformer based radiology report generation architecture, and also compare the performance of a transformer based decoder with the recurrence based decoder. Experiments were performed using the IU-CXR dataset, showing superior results to its LSTM counterpart and being significantly faster. Finally, we identify the need of evaluating radiology report generation system using both language generation metrics and classification metrics, which helps to provide robust measure of generated reports in terms of their coherence and diagnostic value.
Abstract:The novel coronavirus (COVID-19), a highly infectious respiratory disease caused by the SARS-CoV-2 has emerged as an unprecedented healthcare crisis. The pandemic had a devastating impact on the health, well-being, and economy of the global population. Early screening and diagnosis of symptomatic patients plays crucial role in isolation of patient to help stop community transmission as well as providing early treatment helping in reducing the mortality rate. Although, the RT-PCR test is the gold standard for COVID-19 testing, it is a manual, laborious, time consuming, uncomfortable, and invasive process. Due to its accessibility, availability, lower-cost, ease of sanitisation, and portable setup, chest X-Ray imaging can serve as an effective screening and diagnostic tool. In this study, we first highlight limitations of existing datasets and studies in terms of data quality, data imbalance, and evaluation strategy. Second, we curated a large-scale COVID-19 chest X-ray dataset from many publicly available COVID-19 imaging databases and proposed a pre-processing pipeline to improve quality of the dataset. We proposed CoVScreen, an CNN architecture to train and test the curated dataset. The experimental results applying different classification scenarios on the curated dataset in terms of various evaluation metrics demonstrate the effectiveness of proposed methodology in the screening of COVID-19 infection.
Abstract:Medical imaging has been used for diagnosis of various conditions, making it one of the most powerful resources for effective patient care. Due to widespread availability, low cost, and low radiation, chest X-ray is one of the most sought after radiology examination for the diagnosis of various thoracic diseases. Due to advancements in medical imaging technologies and increasing patient load, current radiology workflow faces various challenges including increasing backlogs, working long hours, and increase in diagnostic errors. An automated computer-aided diagnosis system that can interpret chest X-rays to augment radiologists by providing actionable insights has potential to provide second opinion to radiologists, highlight relevant regions in the image, in turn expediting clinical workflow, reducing diagnostic errors, and improving patient care. In this study, we applied a novel architecture augmenting the DenseNet121 Convolutional Neural Network (CNN) with multi-head self-attention mechanism using transformer, namely SA-DenseNet121, that can identify multiple thoracic diseases in chest X-rays. We conducted experiments on four of the largest chest X-ray datasets, namely, ChestX-ray14, CheXpert, MIMIC-CXR-JPG, and IU-CXR. Experimental results in terms of area under the receiver operating characteristics (AUC-ROC) shows that augmenting CNN with self-attention has potential in diagnosing different thoracic diseases from chest X-rays. The proposed methodology has the potential to support the reading workflow, improve efficiency, and reduce diagnostic errors.
Abstract:Purpose: Ultrasound is the most commonly used medical imaging modality for diagnosis and screening in clinical practice. Due to its safety profile, noninvasive nature and portability, ultrasound is the primary imaging modality for fetal assessment in pregnancy. Current ultrasound processing methods are either manual or semi-automatic and are therefore laborious, time-consuming and prone to errors, and automation would go a long way in addressing these challenges. Automated identification of placental changes at earlier gestation could facilitate potential therapies for conditions such as fetal growth restriction and pre-eclampsia that are currently detected only at late gestational age, potentially preventing perinatal morbidity and mortality. Methods: We propose an automatic three-dimensional multi-modal (B-mode and power Doppler) ultrasound segmentation of the human placenta using deep learning combined with different fusion strategies.We collected data containing Bmode and power Doppler ultrasound scans for 400 studies. Results: We evaluated different fusion strategies and state-of-the-art image segmentation networks for placenta segmentation based on standard overlap- and boundary-based metrics. We found that multimodal information in the form of B-mode and power Doppler scans outperform any single modality. Furthermore, we found that B-mode and power Doppler input scans fused at the data level provide the best results with a mean Dice Similarity Coefficient (DSC) of 0.849. Conclusion: We conclude that the multi-modal approach of combining B-mode and power Doppler scans is effective in segmenting the placenta from 3D ultrasound scans in a fully automated manner and is robust to quality variation of the datasets.
Abstract:Coronary artery diseases are among the leading causes of mortality worldwide. Timely and accurate diagnosis, facilitated by precise coronary artery segmentation, is pivotal in changing patient outcomes. In the realm of biomedical imaging, convolutional neural networks, especially the U-Net architecture, have revolutionised segmentation processes. However, one of the primary challenges remains the lack of benchmarking datasets specific to coronary arteries. However through the use of the recently published public dataset ASOCA, the potential of deep learning for accurate coronary segmentation can be improved. This paper delves deep into examining the performance of 25 distinct encoder-decoder combinations. Through analysis of the 40 cases provided to ASOCA participants, it is revealed that the EfficientNet-LinkNet combination, serving as encoder and decoder, stands out. It achieves a Dice coefficient of 0.882 and a 95th percentile Hausdorff distance of 4.753. These findings not only underscore the superiority of our model in comparison to those presented at the MICCAI 2020 challenge but also set the stage for future advancements in coronary artery segmentation, opening doors to enhanced diagnostic and treatment strategies.
Abstract:Segmentation of the sigmoid colon is a crucial aspect of treating diverticulitis. It enables accurate identification and localisation of inflammation, which in turn helps healthcare professionals make informed decisions about the most appropriate treatment options. This research presents a novel deep learning architecture for segmenting the sigmoid colon from Computed Tomography (CT) images using a modified 3D U-Net architecture. Several variations of the 3D U-Net model with modified hyper-parameters were examined in this study. Pyramid pooling (PyP) and channel-spatial Squeeze and Excitation (csSE) were also used to improve the model performance. The networks were trained using manually annotated sigmoid colon. A five-fold cross-validation procedure was used on a test dataset to evaluate the network's performance. As indicated by the maximum Dice similarity coefficient (DSC) of 56.92+/-1.42%, the application of PyP and csSE techniques improves segmentation precision. We explored ensemble methods including averaging, weighted averaging, majority voting, and max ensemble. The results show that average and majority voting approaches with a threshold value of 0.5 and consistent weight distribution among the top three models produced comparable and optimal results with DSC of 88.11+/-3.52%. The results indicate that the application of a modified 3D U-Net architecture is effective for segmenting the sigmoid colon in Computed Tomography (CT) images. In addition, the study highlights the potential benefits of integrating ensemble methods to improve segmentation precision.
Abstract:Medical visual question answering (Med-VQA) is a machine learning task that aims to create a system that can answer natural language questions based on given medical images. Although there has been rapid progress on the general VQA task, less progress has been made on Med-VQA due to the lack of large-scale annotated datasets. In this paper, we present domain-specific pre-training strategies, including a novel contrastive learning pretraining method, to mitigate the problem of small datasets for the Med-VQA task. We find that the model benefits from components that use fewer parameters. We also evaluate and discuss the model's visual reasoning using evidence verification techniques. Our proposed model obtained an accuracy of 60% on the VQA-Med 2019 test set, giving comparable results to other state-of-the-art Med-VQA models.
Abstract:With rise of digital age, there is an explosion of information in the form of news, articles, social media, and so on. Much of this data lies in unstructured form and manually managing and effectively making use of it is tedious, boring and labor intensive. This explosion of information and need for more sophisticated and efficient information handling tools gives rise to Information Extraction(IE) and Information Retrieval(IR) technology. Information Extraction systems takes natural language text as input and produces structured information specified by certain criteria, that is relevant to a particular application. Various sub-tasks of IE such as Named Entity Recognition, Coreference Resolution, Named Entity Linking, Relation Extraction, Knowledge Base reasoning forms the building blocks of various high end Natural Language Processing (NLP) tasks such as Machine Translation, Question-Answering System, Natural Language Understanding, Text Summarization and Digital Assistants like Siri, Cortana and Google Now. This paper introduces Information Extraction technology, its various sub-tasks, highlights state-of-the-art research in various IE subtasks, current challenges and future research directions.