Abstract:The advancements in smart sensors for Industry 4.0 offer ample opportunities for low-powered predictive maintenance and condition monitoring. However, traditional approaches in this field rely on processing in the cloud, which incurs high costs in energy and storage. This paper investigates the potential of neural networks for low-power on-device computation of vibration sensor data for predictive maintenance. We review the literature on Spiking Neural Networks (SNNs) and Artificial Neuronal Networks (ANNs) for vibration-based predictive maintenance by analyzing datasets, data preprocessing, network architectures, and hardware implementations. Our findings suggest that no satisfactory standard benchmark dataset exists for evaluating neural networks in predictive maintenance tasks. Furthermore frequency domain transformations are commonly employed for preprocessing. SNNs mainly use shallow feed forward architectures, whereas ANNs explore a wider range of models and deeper networks. Finally, we highlight the need for future research on hardware implementations of neural networks for low-power predictive maintenance applications and the development of a standardized benchmark dataset.
Abstract:During the use of Advanced Driver Assistance Systems (ADAS), drivers can intervene in the active function and take back control due to various reasons. However, the specific reasons for driver-initiated takeovers in naturalistic driving are still not well understood. In order to get more information on the reasons behind these takeovers, a test group study was conducted. There, 17 participants used a predictive longitudinal driving function for their daily commutes and annotated the reasons for their takeovers during active function use. In this paper, the recorded takeovers are analyzed and the different reasons for them are highlighted. The results show that the reasons can be divided into three main categories. The most common category consists of takeovers which aim to adjust the behavior of the ADAS within its Operational Design Domain (ODD) in order to better match the drivers' personal preferences. Other reasons include takeovers due to leaving the ADAS's ODD and corrections of incorrect sensing state information. Using the questionnaire results of the test group study, it was found that the number and frequency of takeovers especially within the ADAS's ODD have a significant negative impact on driver satisfaction. Therefore, the driver satisfaction with the ADAS could be increased by adapting its behavior to the drivers' wishes and thereby lowering the number of takeovers within the ODD. The information contained in the takeover behavior of the drivers could be used as feedback for the ADAS. Finally, it is shown that there are considerable differences in the takeover behavior of different drivers, which shows a need for ADAS individualization.
Abstract:This paper presents a white-box intention-aware decision-making for the handling of interactions between a pedestrian and an automated vehicle (AV) in an unsignalized street crossing scenario. Moreover, a design framework has been developed, which enables automated parameterization of the decision-making. This decision-making is designed in such a manner that it can understand pedestrians in urban traffic and can react accordingly to their intentions. That way, a human-like response to the actions of the pedestrian is ensured, leading to a higher acceptance of AVs. The core notion of this paper is that the intention prediction of the pedestrian to cross the street and decision-making are divided into two subsystems. On the one hand, the intention detection is a data-driven, black-box model. Thus, it can model the complex behavior of the pedestrians. On the other hand, the decision-making is a white-box model to ensure traceability and to enable a rapid verification and validation of AVs. This white-box decision-making provides human-like behavior and a guaranteed prevention of deadlocks. An additional benefit is that the proposed decision-making requires low computational resources only enabling real world usage. The automated parameterization uses a particle swarm optimization and compares two different models of the pedestrian: The social force model and the Markov decision process model. Consequently, a rapid design of the decision-making is possible and different pedestrian behaviors can be taken into account. The results reinforce the applicability of the proposed intention-aware decision-making.
Abstract:This paper presents the development of a real-time simulator for the validation of controlling a large vehicle manipulator. The need for this development can be justified by the lack of such a simulator: There are neither open source projects nor commercial products, which would be suitable for testing cooperative control concepts. First, we present the nonlinear simulation model of the vehicle and the manipulator. For the modeling MATLAB/Simulink is used, which also enables a code generation into standalone C++ ROS-Nodes (Robot Operating System Nodes). The emerging challenges of the code generation are also discussed. Then, the obtained standalone C++ ROS-Nodes integrated in the simulator framework which includes a graphical user interface, a steering wheel and a joystick. This simulator can provide the real-time calculation of the overall system's motion enabling the interaction of human and automation. Furthermore, a qualitative validation of the model is given. Finally, the functionalities of the simulator is demonstrated in tests with a human operators.