Abstract:Spiking Neural Networks (SNNs) offer promising energy efficiency advantages, particularly when processing sparse spike trains. However, their incompatibility with traditional datasets, which consist of batches of input vectors rather than spike trains, necessitates the development of efficient encoding methods. This paper introduces a novel, open-source PyTorch-compatible Python framework for spike encoding, designed for neuromorphic applications in machine learning and reinforcement learning. The framework supports a range of encoding algorithms, including Leaky Integrate-and-Fire (LIF), Step Forward (SF), Pulse Width Modulation (PWM), and Ben's Spiker Algorithm (BSA), as well as specialized encoding strategies covering population coding and reinforcement learning scenarios. Furthermore, we investigate the performance trade-offs of each method on embedded hardware using C/C++ implementations, considering energy consumption, computation time, spike sparsity, and reconstruction accuracy. Our findings indicate that SF typically achieves the lowest reconstruction error and offers the highest energy efficiency and fastest encoding speed, achieving the second-best spike sparsity. At the same time, other methods demonstrate particular strengths depending on the signal characteristics. This framework and the accompanying empirical analysis provide valuable resources for selecting optimal encoding strategies for energy-efficient SNN applications.
Abstract:Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia by restoring their ability to perform daily activities. However, current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring. Wireless iBMIs offer a solution but are constrained by a limited data rate. To overcome this challenge, we are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs. The networks consist of a temporal convolution-based compression followed by recurrent processing and a final interpolation back to the original sequence length. As recurrent units, we explore gated recurrent units (GRUs), leaky integrate-and-fire (LIF) neurons, and a combination of both - spiking GRUs (sGRUs) and analyze their differences in terms of accuracy, footprint, and activation sparsity. To that end, we train decoders on the "Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology" dataset and evaluate it using the NeuroBench framework, targeting both tracks of the IEEE BioCAS Grand Challenge on Neural Decoding. Our approach achieves high accuracy in predicting velocities of primate reaching movements from multichannel primary motor cortex recordings while maintaining a low number of synaptic operations, surpassing the current baseline models in the NeuroBench framework. This work highlights the potential of hybrid neural networks to facilitate wireless iBMIs with high decoding precision and a substantial increase in the number of monitored neurons, paving the way toward more advanced neuroprosthetic technologies.
Abstract:The advancements in smart sensors for Industry 4.0 offer ample opportunities for low-powered predictive maintenance and condition monitoring. However, traditional approaches in this field rely on processing in the cloud, which incurs high costs in energy and storage. This paper investigates the potential of neural networks for low-power on-device computation of vibration sensor data for predictive maintenance. We review the literature on Spiking Neural Networks (SNNs) and Artificial Neuronal Networks (ANNs) for vibration-based predictive maintenance by analyzing datasets, data preprocessing, network architectures, and hardware implementations. Our findings suggest that no satisfactory standard benchmark dataset exists for evaluating neural networks in predictive maintenance tasks. Furthermore frequency domain transformations are commonly employed for preprocessing. SNNs mainly use shallow feed forward architectures, whereas ANNs explore a wider range of models and deeper networks. Finally, we highlight the need for future research on hardware implementations of neural networks for low-power predictive maintenance applications and the development of a standardized benchmark dataset.
Abstract:We present a design methodology that enables the semi-automatic generation of a hardware-accelerated graph building architectures for locally constrained graphs based on formally described detector definitions. In addition, we define a similarity measure in order to compare our locally constrained graph building approaches with commonly used k-nearest neighbour building approaches. To demonstrate the feasibility of our solution for particle physics applications, we implemented a real-time graph building approach in a case study for the Belle~II central drift chamber using Field-Programmable Gate Arrays~(FPGAs). Our presented solution adheres to all throughput and latency constraints currently present in the hardware-based trigger of the Belle~II experiment. We achieve constant time complexity at the expense of linear space complexity and thus prove that our automated methodology generates online graph building designs suitable for a wide range of particle physics applications. By enabling an hardware-accelerated pre-processing of graphs, we enable the deployment of novel Graph Neural Networks~(GNNs) in first level triggers of particle physics experiments.