Abstract:Traffic classification associates packet streams with known application labels, which is vital for network security and network management. With the rise of NAT, port dynamics, and encrypted traffic, it is increasingly challenging to obtain unified traffic features for accurate classification. Many state-of-the-art traffic classifiers automatically extract features from the packet stream based on deep learning models such as convolution networks. Unfortunately, the compositional and causal relationships between packets are not well extracted in these deep learning models, which affects both prediction accuracy and generalization on different traffic types. In this paper, we present a chained graph model on the packet stream to keep the chained compositional sequence. Next, we propose CGNN, a graph neural network based traffic classification method, which builds a graph classifier over automatically extracted features over the chained graph. Extensive evaluation over real-world traffic data sets, including normal, encrypted and malicious labels, show that, CGNN improves the prediction accuracy by 23\% to 29\% for application classification, by 2\% to 37\% for malicious traffic classification, and reaches the same accuracy level for encrypted traffic classification. CGNN is quite robust in terms of the recall and precision metrics. We have extensively evaluated the parameter sensitivity of CGNN, which yields optimized parameters that are quite effective for traffic classification.
Abstract:The prediction of express delivery sequence, i.e., modeling and estimating the volumes of daily incoming and outgoing parcels for delivery, is critical for online business, logistics, and positive customer experience, and specifically for resource allocation optimization and promotional activity arrangement. A precise estimate of consumer delivery requests has to involve sequential factors such as shopping behaviors, weather conditions, events, business campaigns, and their couplings. Besides, conventional sequence prediction assumes a stable sequence evolution, failing to address complex nonlinear sequences and various feature effects in the above multi-source data. Although deep networks and attention mechanisms demonstrate the potential of complex sequence modeling, extant networks ignore the heterogeneous and coupling situation between features and sequences, resulting in weak prediction accuracy. To address these issues, we propose DeepExpress - a deep-learning based express delivery sequence prediction model, which extends the classic seq2seq framework to learning complex coupling between sequence and features. DeepExpress leverages an express delivery seq2seq learning, a carefully-designed heterogeneous feature representation, and a novel joint training attention mechanism to adaptively map heterogeneous data, and capture sequence-feature coupling for precise estimation. Experimental results on real-world data demonstrate that the proposed method outperforms both shallow and deep baseline models.