Abstract:Neural networks are increasingly used in safety-critical applications such as robotics and autonomous vehicles. However, the deployment of neural-network-controlled systems (NNCSs) raises significant safety concerns. Many recent advances overlook critical aspects of verifying control and ensuring safety in real-time scenarios. This paper presents a case study on using POLAR-Express, a state-of-the-art NNCS reachability analysis tool, for runtime safety verification in a Turtlebot navigation system using LiDAR. The Turtlebot, equipped with a neural network controller for steering, operates in a complex environment with obstacles. We developed a safe online controller switching strategy that switches between the original NNCS controller and an obstacle avoidance controller based on the verification results. Our experiments, conducted in a ROS2 Flatland simulation environment, explore the capabilities and limitations of using POLAR-Express for runtime verification and demonstrate the effectiveness of our switching strategy.
Abstract:Autonomous Driving (AD) faces crucial hurdles for commercial launch, notably in the form of diminished public trust and safety concerns from long-tail unforeseen driving scenarios. This predicament is due to the limitation of deep neural networks in AD software, which struggle with interpretability and exhibit poor generalization capabilities in out-of-distribution and uncertain scenarios. To this end, this paper advocates for the integration of Large Language Models (LLMs) into the AD system, leveraging their robust common-sense knowledge, reasoning abilities, and human-interaction capabilities. The proposed approach deploys the LLM as an intelligent decision-maker in planning, incorporating safety verifiers for contextual safety learning to enhance overall AD performance and safety. We present results from two case studies that affirm the efficacy of our approach. We further discuss the potential integration of LLM for other AD software components including perception, prediction, and simulation. Despite the observed challenges in the case studies, the integration of LLMs is promising and beneficial for reinforcing both safety and performance in AD.