Neural networks are increasingly used in safety-critical applications such as robotics and autonomous vehicles. However, the deployment of neural-network-controlled systems (NNCSs) raises significant safety concerns. Many recent advances overlook critical aspects of verifying control and ensuring safety in real-time scenarios. This paper presents a case study on using POLAR-Express, a state-of-the-art NNCS reachability analysis tool, for runtime safety verification in a Turtlebot navigation system using LiDAR. The Turtlebot, equipped with a neural network controller for steering, operates in a complex environment with obstacles. We developed a safe online controller switching strategy that switches between the original NNCS controller and an obstacle avoidance controller based on the verification results. Our experiments, conducted in a ROS2 Flatland simulation environment, explore the capabilities and limitations of using POLAR-Express for runtime verification and demonstrate the effectiveness of our switching strategy.