Abstract:Vision language models (VLMs) have shown strong zero-shot generalization across various tasks, especially when integrated with large language models (LLMs). However, their ability to comprehend rhetorical and persuasive visual media, such as advertisements, remains understudied. Ads often employ atypical imagery, using surprising object juxtapositions to convey shared properties. For example, Fig. 1 (e) shows a beer with a feather-like texture. This requires advanced reasoning to deduce that this atypical representation signifies the beer's lightness. We introduce three novel tasks, Multi-label Atypicality Classification, Atypicality Statement Retrieval, and Aypical Object Recognition, to benchmark VLMs' understanding of atypicality in persuasive images. We evaluate how well VLMs use atypicality to infer an ad's message and test their reasoning abilities by employing semantically challenging negatives. Finally, we pioneer atypicality-aware verbalization by extracting comprehensive image descriptions sensitive to atypical elements. Our findings reveal that: (1) VLMs lack advanced reasoning capabilities compared to LLMs; (2) simple, effective strategies can extract atypicality-aware information, leading to comprehensive image verbalization; (3) atypicality aids persuasive advertisement understanding. Code and data will be made available.
Abstract:Existing object recognition models have been shown to lack robustness in diverse geographical scenarios due to significant domain shifts in design and context. Class representations need to be adapted to more accurately reflect an object concept under these shifts. In the absence of training data from target geographies, we hypothesize that geography-specific descriptive knowledge of object categories can be leveraged to enhance robustness. For this purpose, we explore the feasibility of probing a large-language model for geography-specific object knowledge, and we investigate integrating knowledge in zero-shot and learnable soft prompting with the CLIP vision-language model. In particular, we propose a geography knowledge regularization method to ensure that soft prompts trained on a source set of geographies generalize to an unseen target set of geographies. Our gains on DollarStreet when generalizing from a model trained only on data from Europe are as large as +2.8 on countries from Africa, and +4.6 on the hardest classes. We further show competitive performance vs. few-shot target training, and provide insights into how descriptive knowledge captures geographical differences.
Abstract:Existing domain adaptation (DA) and generalization (DG) methods in object detection enforce feature alignment in the visual space but face challenges like object appearance variability and scene complexity, which make it difficult to distinguish between objects and achieve accurate detection. In this paper, we are the first to address the problem of semi-supervised domain generalization by exploring vision-language pre-training and enforcing feature alignment through the language space. We employ a novel Cross-Domain Descriptive Multi-Scale Learning (CDDMSL) aiming to maximize the agreement between descriptions of an image presented with different domain-specific characteristics in the embedding space. CDDMSL significantly outperforms existing methods, achieving 11.7% and 7.5% improvement in DG and DA settings, respectively. Comprehensive analysis and ablation studies confirm the effectiveness of our method, positioning CDDMSL as a promising approach for domain generalization in object detection tasks.