Abstract:The increasing size of transformer-based models in NLP makes the question of compressing them important. In this work, we present a comprehensive analysis of factorization based model compression techniques. Specifically, we focus on comparing straightforward low-rank factorization against the recently introduced Monarch factorization, which exhibits impressive performance preservation on the GLUE benchmark. To mitigate stability issues associated with low-rank factorization of the matrices in pre-trained transformers, we introduce a staged factorization approach wherein layers are factorized one by one instead of being factorized simultaneously. Through this strategy we significantly enhance the stability and reliability of the compression process. Further, we introduce a simple block-wise low-rank factorization method, which has a close relationship to Monarch factorization. Our experiments lead to the surprising conclusion that straightforward low-rank factorization consistently outperforms Monarch factorization across both different compression ratios and six different text classification tasks.
Abstract:This study introduces and investigates the capabilities of three different text mining approaches, namely Latent Semantic Analysis, Latent Dirichlet Analysis, and Clustering Word Vectors, for automating code extraction from a relatively small discussion board dataset. We compare the outputs of each algorithm with a previous dataset that was manually coded by two human raters. The results show that even with a relatively small dataset, automated approaches can be an asset to course instructors by extracting some of the discussion codes, which can be used in Epistemic Network Analysis.