Abstract:Aspect-based sentiment analysis plays an essential role in natural language processing and artificial intelligence. Recently, researchers only focused on aspect detection and sentiment classification but ignoring the sub-task of detecting user opinion span, which has enormous potential in practical applications. In this paper, we present a new Vietnamese dataset (UIT-ViSD4SA) consisting of 35,396 human-annotated spans on 11,122 feedback comments for evaluating the span detection in aspect-based sentiment analysis. Besides, we also propose a novel system using Bidirectional Long Short-Term Memory (BiLSTM) with a Conditional Random Field (CRF) layer (BiLSTM-CRF) for the span detection task in Vietnamese aspect-based sentiment analysis. The best result is a 62.76% F1 score (macro) for span detection using BiLSTM-CRF with embedding fusion of syllable embedding, character embedding, and contextual embedding from XLM-RoBERTa. In future work, span detection will be extended in many NLP tasks such as constructive detection, emotion recognition, complaint analysis, and opinion mining. Our dataset is freely available at https://github.com/kimkim00/UIT-ViSD4SA for research purposes.
Abstract:In this paper, we present a process of building a social listening system based on aspect-based sentiment analysis in Vietnamese from creating a dataset to building a real application. Firstly, we create UIT-ViSFD, a Vietnamese Smartphone Feedback Dataset as a new benchmark corpus built based on a strict annotation schemes for evaluating aspect-based sentiment analysis, consisting of 11,122 human-annotated comments for mobile e-commerce, which is freely available for research purposes. We also present a proposed approach based on the Bi-LSTM architecture with the fastText word embeddings for the Vietnamese aspect based sentiment task. Our experiments show that our approach achieves the best performances with the F1-score of 84.48% for the aspect task and 63.06% for the sentiment task, which performs several conventional machine learning and deep learning systems. Last but not least, we build SA2SL, a social listening system based on the best performance model on our dataset, which will inspire more social listening systems in future.