Abstract:Unforeseen particle accelerator interruptions, also known as interlocks, lead to abrupt operational changes despite being necessary safety measures. These may result in substantial loss of beam time and perhaps even equipment damage. We propose a simple yet powerful binary classification model aiming to forecast such interruptions, in the case of the High Intensity Proton Accelerator complex at the Paul Scherrer Institut. The model is formulated as logistic regression penalized by least absolute shrinkage and selection operator, based on a statistical two sample test to distinguish between unstable and stable states of the accelerator. The primary objective for receiving alarms prior to interlocks is to allow for countermeasures and reduce beam time loss. Hence, a continuous evaluation metric is developed to measure the saved beam time in any period, given the assumption that interlocks could be circumvented by reducing the beam current. The best-performing interlock-to-stable classifier can potentially increase the beam time by around 5 min in a day. Possible instrumentation for fast adjustment of the beam current is also listed and discussed.
Abstract:Particle accelerators are complex facilities that produce large amounts of structured data and have clear optimization goals as well as precisely defined control requirements. As such they are naturally amenable to data-driven research methodologies. The data from sensors and monitors inside the accelerator form multivariate time series. With fast pre-emptive approaches being highly preferred in accelerator control and diagnostics, the application of data-driven time series forecasting methods is particularly promising. This review formulates the time series forecasting problem and summarizes existing models with applications in various scientific areas. Several current and future attempts in the field of particle accelerators are introduced. The application of time series forecasting to particle accelerators has shown encouraging results and the promise for broader use, and existing problems such as data consistency and compatibility have started to be addressed.
Abstract:The beam interruptions (interlocks) of particle accelerators, despite being necessary safety measures, lead to abrupt operational changes and a substantial loss of beam time. A novel time series classification approach is applied to decrease beam time loss in the High Intensity Proton Accelerator complex by forecasting interlock events. The forecasting is performed through binary classification of windows of multivariate time series. The time series are transformed into Recurrence Plots which are then classified by a Convolutional Neural Network, which not only captures the inner structure of the time series but also utilizes the advances of image classification techniques. Our best performing interlock-to-stable classifier reaches an Area under the ROC Curve value of $0.71 \pm 0.01$ compared to $0.65 \pm 0.01$ of a Random Forest model, and it can potentially reduce the beam time loss by $0.5 \pm 0.2$ seconds per interlock.