Abstract:Estimating causal effects of continuous treatments is a common problem in practice, for example, in studying dose-response functions. Classical analyses typically assume that all confounders are fully observed, whereas in real-world applications, unmeasured confounding often persists. In this article, we propose a novel framework for local identification of dose-response functions using instrumental variables, thereby mitigating bias induced by unobserved confounders. We introduce the concept of a uniform regular weighting function and consider covering the treatment space with a finite collection of open sets. On each of these sets, such a weighting function exists, allowing us to identify the dose-response function locally within the corresponding region. For estimation, we develop an augmented inverse probability weighting score for continuous treatments under a debiased machine learning framework with instrumental variables. We further establish the asymptotic properties when the dose-response function is estimated via kernel regression or empirical risk minimization. Finally, we conduct both simulation and empirical studies to assess the finite-sample performance of the proposed methods.
Abstract:Instrumental variable methods are fundamental to causal inference when treatment assignment is confounded by unobserved variables. In this article, we develop a general nonparametric framework for identification and learning with multi-categorical or continuous instrumental variables. Specifically, we propose an additive instrumental variable framework to identify mean potential outcomes and the average treatment effect with a weighting function. Leveraging semiparametric theory, we derive efficient influence functions and construct consistent, asymptotically normal estimators via debiased machine learning. Extensions to longitudinal data, dynamic treatment regimes, and multiplicative instrumental variables are further developed. We demonstrate the proposed method by employing simulation studies and analyzing real data from the Job Training Partnership Act program.




Abstract:Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. The performance of medical image segmentation has been significantly advanced with the convolutional neural networks (CNNs). However, most existing CNNs-based methods often produce unsatisfactory segmentation mask without accurate object boundaries. This is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. In that the medical image is characterized by the high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation are still challenging today. In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information. BA-Net adopts encoder-decoder architecture. In each stage of encoder network, pyramid edge extraction module is proposed for obtaining edge information with multiple granularities firstly. Then we design a mini multi-task learning module for jointly learning to segment object masks and detect lesion boundaries. In particular, a new interactive attention is proposed to bridge two tasks for achieving information complementarity between different tasks, which effectively leverages the boundary information for offering a strong cue to better segmentation prediction. At last, a cross feature fusion module aims to selectively aggregate multi-level features from the whole encoder network. By cascaded three modules, richer context and fine-grain features of each stage are encoded. Extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art approaches.




Abstract:Skin lesion segmentation is an important step for automated melanoma diagnosis. Due to the non-negligible diversity of lesions from different patients, extracting powerful context for fine-grained semantic segmentation is still challenging today. In this paper, we formulate a cascaded context enhancement neural network for skin lesion segmentation. The proposed method adopts encoder-decoder architecture, a new cascaded context aggregation (CCA) module with gate-based information integration approach is proposed for sequentially and selectively aggregating original image and encoder network features from low-level to high-level. The generated context is further utilized to guide discriminative features extraction by the designed context-guided local affinity module. Furthermore, an auxiliary loss is added to the CCA module for refining the prediction. In our work, we evaluate our approach on three public datasets. We achieve the Jaccard Index (JA) of 87.1%, 80.3% and 86.6% on ISIC-2016, ISIC-2017 and PH2 datasets, which are higher than other state-of-the-art methods respectively.