Skin lesion segmentation is an important step for automated melanoma diagnosis. Due to the non-negligible diversity of lesions from different patients, extracting powerful context for fine-grained semantic segmentation is still challenging today. In this paper, we formulate a cascaded context enhancement neural network for skin lesion segmentation. The proposed method adopts encoder-decoder architecture, a new cascaded context aggregation (CCA) module with gate-based information integration approach is proposed for sequentially and selectively aggregating original image and encoder network features from low-level to high-level. The generated context is further utilized to guide discriminative features extraction by the designed context-guided local affinity module. Furthermore, an auxiliary loss is added to the CCA module for refining the prediction. In our work, we evaluate our approach on three public datasets. We achieve the Jaccard Index (JA) of 87.1%, 80.3% and 86.6% on ISIC-2016, ISIC-2017 and PH2 datasets, which are higher than other state-of-the-art methods respectively.