Abstract:Accurate and real-time prediction of surrounding vehicles' lane-changing intentions is a critical challenge in deploying safe and efficient autonomous driving systems in open-world scenarios. Existing high-performing methods remain hard to deploy due to their high computational cost, long training times, and excessive memory requirements. Here, we propose an efficient lane-changing intention prediction approach based on brain-inspired Spiking Neural Networks (SNN). By leveraging the event-driven nature of SNN, the proposed approach enables us to encode the vehicle's states in a more efficient manner. Comparison experiments conducted on HighD and NGSIM datasets demonstrate that our method significantly improves training efficiency and reduces deployment costs while maintaining comparable prediction accuracy. Particularly, compared to the baseline, our approach reduces training time by 75% and memory usage by 99.9%. These results validate the efficiency and reliability of our method in lane-changing predictions, highlighting its potential for safe and efficient autonomous driving systems while offering significant advantages in deployment, including reduced training time, lower memory usage, and faster inference.
Abstract:Safety helmets play a crucial role in protecting workers from head injuries in construction sites, where potential hazards are prevalent. However, currently, there is no approach that can simultaneously achieve both model accuracy and performance in complex environments. In this study, we utilized a Yolo-based model for safety helmet detection, achieved a 2% improvement in mAP (mean Average Precision) performance while reducing parameters and Flops count by over 25%. YOLO(You Only Look Once) is a widely used, high-performance, lightweight model architecture that is well suited for complex environments. We presents a novel approach by incorporating a lightweight feature extraction network backbone based on GhostNetv2, integrating attention modules such as Spatial Channel-wise Attention Net(SCNet) and Coordination Attention Net(CANet), and adopting the Gradient Norm Aware optimizer (GAM) for improved generalization ability. In safety-critical environments, the accurate detection and speed of safety helmets plays a pivotal role in preventing occupational hazards and ensuring compliance with safety protocols. This work addresses the pressing need for robust and efficient helmet detection methods, offering a comprehensive framework that not only enhances accuracy but also improves the adaptability of detection models to real-world conditions. Our experimental results underscore the synergistic effects of GhostNetv2, attention modules, and the GAM optimizer, presenting a compelling solution for safety helmet detection that achieves superior performance in terms of accuracy, generalization, and efficiency.