Abstract:Facial action unit (AU) intensity plays a pivotal role in quantifying fine-grained expression behaviors, which is an effective condition for facial expression manipulation. However, publicly available datasets containing intensity annotations for multiple AUs remain severely limited, often featuring a restricted number of subjects. This limitation places challenges to the AU intensity manipulation in images due to disentanglement issues, leading researchers to resort to other large datasets with pretrained AU intensity estimators for pseudo labels. In addressing this constraint and fully leveraging manual annotations of AU intensities for precise manipulation, we introduce AUEditNet. Our proposed model achieves impressive intensity manipulation across 12 AUs, trained effectively with only 18 subjects. Utilizing a dual-branch architecture, our approach achieves comprehensive disentanglement of facial attributes and identity without necessitating additional loss functions or implementing with large batch sizes. This approach offers a potential solution to achieve desired facial attribute editing despite the dataset's limited subject count. Our experiments demonstrate AUEditNet's superior accuracy in editing AU intensities, affirming its capability in disentangling facial attributes and identity within a limited subject pool. AUEditNet allows conditioning by either intensity values or target images, eliminating the need for constructing AU combinations for specific facial expression synthesis. Moreover, AU intensity estimation, as a downstream task, validates the consistency between real and edited images, confirming the effectiveness of our proposed AU intensity manipulation method.
Abstract:Learning-based gaze estimation methods require large amounts of training data with accurate gaze annotations. Facing such demanding requirements of gaze data collection and annotation, several image synthesis methods were proposed, which successfully redirected gaze directions precisely given the assigned conditions. However, these methods focused on changing gaze directions of the images that only include eyes or restricted ranges of faces with low resolution (less than $128\times128$) to largely reduce interference from other attributes such as hairs, which limits application scenarios. To cope with this limitation, we proposed a portable network, called ReDirTrans, achieving latent-to-latent translation for redirecting gaze directions and head orientations in an interpretable manner. ReDirTrans projects input latent vectors into aimed-attribute embeddings only and redirects these embeddings with assigned pitch and yaw values. Then both the initial and edited embeddings are projected back (deprojected) to the initial latent space as residuals to modify the input latent vectors by subtraction and addition, representing old status removal and new status addition. The projection of aimed attributes only and subtraction-addition operations for status replacement essentially mitigate impacts on other attributes and the distribution of latent vectors. Thus, by combining ReDirTrans with a pretrained fixed e4e-StyleGAN pair, we created ReDirTrans-GAN, which enables accurately redirecting gaze in full-face images with $1024\times1024$ resolution while preserving other attributes such as identity, expression, and hairstyle. Furthermore, we presented improvements for the downstream learning-based gaze estimation task, using redirected samples as dataset augmentation.
Abstract:Ultrasound is progressing toward becoming an affordable and versatile solution to medical imaging. With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging as it requires trained operators in close proximity to patients for long period of time. In this work, we investigate the important yet seldom-studied problem of scan target localization, under the setting of lung ultrasound imaging. We propose a purely vision-based, data driven method that incorporates learning-based computer vision techniques. We combine a human pose estimation model with a specially designed regression model to predict the lung ultrasound scan targets, and deploy multiview stereo vision to enhance the consistency of 3D target localization. While related works mostly focus on phantom experiments, we collect data from 30 human subjects for testing. Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69){\deg} for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets. Moreover, our approach can serve as a general solution to other types of ultrasound modalities. The code for implementation has been released.