Abstract:Industry 4.0 introduced AI as a transformative solution for modernizing manufacturing processes. Its successor, Industry 5.0, envisions humans as collaborators and experts guiding these AI-driven manufacturing solutions. Developing these techniques necessitates algorithms capable of safe, real-time identification of human positions in a scene, particularly their hands, during collaborative assembly. Although substantial efforts have curated datasets for hand segmentation, most focus on residential or commercial domains. Existing datasets targeting industrial settings predominantly rely on synthetic data, which we demonstrate does not effectively transfer to real-world operations. Moreover, these datasets lack uncertainty estimations critical for safe collaboration. Addressing these gaps, we present HAGS: Hand and Glove Segmentation Dataset. This dataset provides 1200 challenging examples to build applications toward hand and glove segmentation in industrial human-robot collaboration scenarios as well as assess out-of-distribution images, constructed via green screen augmentations, to determine ML-classifier robustness. We study state-of-the-art, real-time segmentation models to evaluate existing methods. Our dataset and baselines are publicly available: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/85R7KQ and https://github.com/UTNuclearRoboticsPublic/assembly_glovebox_dataset.
Abstract:Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers due to their reliance on statistical patterns. This limitation is further amplified in average Small LangSLMs with limited context and training data. To address this challenge, we propose an "Inductive Learning" approach utilizing a distributed network of SLMs. This network leverages error-based learning and hint incorporation to refine the reasoning capabilities of SLMs. Our goal is to provide a framework that empowers SLMs to approach the level of logic-based applications achieved by high-parameter models, potentially benefiting any language model. Ultimately, this novel concept paves the way for bridging the logical gap between humans and LLMs across various fields.